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Disclaimer
• The content of this presentation are produced by R. Abedi and also taken 

from several sources, particularly from the fracture mechanics presentation 
by Dr. Vinh Phu Nguyen nvinhphu@gmail.com Monash University (formerly 
at University of Adelaide and Ton Duc Thang University)

Other sources
 Books:
• T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd Edition, CRC Press, USA, 2004
• S. Murakami, Continuum Damage Mechanics, Springer Netherlands, Dordrecht, 2012.
• L.B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, 1998.
• B. Lawn, Fracture of Brittle Solids, Cambridge University Press, 1993.
• M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics, Oxford Press, 1985.
• R.W. Hertzberg, Deformation & Fracture Mechanics of Engineering Materials. John Wiley & Sons, 2012.

 Course notes:
• V.E. Saouma, Fracture Mechanics lecture notes, University of Colorado, Boulder.
• P.J.G. Schreurs, Fracture Mechanics lecture notes, Eindhoven University of Technology (2012).
• A.T. Zender, Fracture Mechanics lecture notes, Cornell University.
• L. Zhigilei, http://people.virginia.edu/~lz2n/mse209/index.html

MSE 2090: Introduction to Materials Science Chapter 8, Failure
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Outline
• Brief recall on mechanics of materials

- stress/strain curves of metals, concrete

• Introduction

• Linear Elastic Fracture Mechanics (LEFM)
- Energy approach (Griffith, 1921, 
Orowan and Irwin 1948)
- Stress intensity factors (Irwin, 1960s)

• LEFM with small crack tip plasticity

- Irwin’s model (1960) and strip yield model
- Plastic zone size and shape

• Elastic-Plastic Fracture Mechanics
- Crack tip opening displacement 
  (CTOD), Wells 1963
- J-integral (Rice, 1958)

• Dynamic Fracture Mechanics

3

Source: Sheiba, Olson, UT Austin

Source: Farkas, Virgina

Source: Y.Q. Zhang, H. Hao, 
J. Appl Mech (2003)Wadley Research Group, UVA3



Outline (cont.)
Fatigue
- Fatigue crack propagation & life prediction
- Paris law

Ductile versus Brittle Fracture
- Stochastic fracture mechanics
- Microcracking and crack branching in brittle 
fracture

RolledAlloys.com

DynamicFractureBifurcation PMMA
Murphy 2006

quippy documentation (www.jrkermode.co.uk)
 

wikipedia
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Outline (cont.)
Computational fracture mechanics
- FEM aspects: 
     - Isoparametric singular elements
     - Calculation of LEFM/EPFM Integrals 
     - Adaptive meshing, XFEM

- Cohesive crack model (Hillerborg, 1976)
- Continuum Damage Mechanics
     - size effect (Bazant)

http://www.fgg.uni-lj.si/~/pmoze/ESDEP/master/toc.htm

Singular Element

Cracks in FEM Adaptive mesh XFEM bulk damage

P. Clarke UTSI

underwood.faculty.asu.edu

P. Leevers
 Imperical College

Cohesive Zone
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Introduction

Cracks: ubiquitous !!!
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Definitions
• Crack, Crack growth/propagation

• A fracture is the (local) separation of an object 
or material into two, or more, pieces under the 
action of stress.

• Fracture mechanics is the field of mechanics 
concerned with the study of the propagation of 
cracks in materials. It uses methods of 
analytical solid mechanics to calculate the 
driving force on a crack and those of 
experimental solid mechanics to characterize 
the material's resistance to fracture (Wiki).
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Objectives of FM

• What is the residual strength as a function of crack size?

• What is the critical crack size?

• How long does it take for a crack to grow from a certain 
initial size to the critical size?
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Approaches to fracture

• Stress analysis

• Energy methods

• Computational fracture mechanics

• Micromechanisms of fracture (eg. atomic level)

• Experiments

• Applications of Fracture Mechanics

covered in 
the course
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Design philosophies
• Safe life

The component is considered to be free of defects after 
fabrication and is designed to remain defect-free during 
service and withstand the maximum static or dynamic 
working stresses for a certain period of time. If flaws, cracks, 
or similar damages are visited during service, the 
component should be discarded immediately.

• Damage tolerance

The component is designed to withstand the maximum 
static or dynamic working stresses for a certain period of 
time even in presence of flaws, cracks, or similar damages of 
certain geometry and size.
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New Failure analysis 

Stresses

Flaw size a
Fracture 

toughness

Fracture Mechanics (FM)

1970s

- FM plays a vital role in the design of every critical structural or machine component in which 
durability and reliability are important issues (aircraft components, nuclear pressure vessels, 
microelectronic devices).

- has also become a valuable tool for material scientists and engineers to guide their efforts in 
developing materials with improved mechanical properties.
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1. Preliminaries
2. History
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Indicial notation
a 3D vector 

two times repeated index=sum, 
summation/dummy index

tensor notation

i: free index (appears precisely once in 
each side of an equation)
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Engineering/matrix notation

Voigt notation
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Stress/strain curve

Wikipedia

necking=decrease of cross-sectional area 
due to plastic deformation

fracture

1: ultimate tensile strength 1717



Principal stresses

Principal stresses are those stresses that act on principal surface. Principal 
surface here means the surface where components of shear-stress is zero.

Principal direction
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Material classification / 
Tensile test
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Strain energy density

Plane problems

Kolosov coefficient

Poisson’s ratio

shear modulus

21



3.1 Fracture modes
3.2 Ductile fracture
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Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~lz2n/mse209/index.html

MSE 2090: Introduction to Materials Science Chapter 8, Failure24
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Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~lz2n/mse209/index.html

MSE 2090: Introduction to Materials Science Chapter 8, Failure

After crack 
commencement
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Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~lz2n/mse209/index.html

MSE 2090: Introduction to Materials Science Chapter 8, Failure26
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Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~lz2n/mse209/index.html

MSE 2090: Introduction to Materials Science Chapter 8, Failure27
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Fracture Types
Shearing 

Plastic deformation (ductile material)

- Applied stress => 
- Dislocation generation and motion =>  
- Dislocations coalesce at grain boundaries =>
- Forming voids =>
- Voids grow to form macroscopic cracks
- Macroscropic crack growth lead to fracture

Dough-like or 
conical features
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Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~lz2n/mse209/index.html

MSE 2090: Introduction to Materials Science Chapter 8, Failure29
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Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~lz2n/mse209/index.html

MSE 2090: Introduction to Materials Science Chapter 8, Failure30
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Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~lz2n/mse209/index.html

MSE 2090: Introduction to Materials Science Chapter 8, Failure32
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Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~lz2n/mse209/index.html

MSE 2090: Introduction to Materials Science Chapter 8, Failure33
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Fracture Types
Cleavage 

Fatigue 

- Cracks grow a very short distance every time

(or transgranular)
 split atom bonds

between grain boundaries

mostly brittle

Clam shell structures mark the location of crack tip 
after each individual cyclic loading
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Fracture Types
Delamination (De-adhesion) 

Crazing 

- Common for polymers
- sub-micormeter voids initiate

stress whitening because of 
light reflection from crazes
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3.3 Ductile to brittle transition
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Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~lz2n/mse209/index.html

MSE 2090: Introduction to Materials Science Chapter 8, Failure37
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Charpy v-notch test

Influence of temperature on Cv
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quippy documentation (www.jrkermode.co.uk)
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1. Temperature Effects
Temperature decrease => Ductile material can become brittle

• BCC metals: Limited dislocation slip systems at low T =>
• Impact energy drops suddenly over a relatively narrow temperature range around DBTT. 

• Ductile to brittle transition temperature (DBTT) or 
• Nil ductility transition temperature (T0)

• FCC and HCP metals remain ductile down to very low temperatures
• Ceramics, the transition occurs at much higher temperatures than for metals

FCC and HCP metals (e.g. Cu, Ni, stainless steel)

strain
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- Titanic in the icy water of Atlantic (BCC)
- Steel structures are every likely to fail in winter39



Source: Tapany Udomphol, Suranaree University of Technology
http://eng.sut.ac.th/metal/images/stories/pdf/14_Brittle_fracture_and_impact_testing_1-6.pdf
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2. Impurities and alloying effect on DBTT 

• Alloying usually increases DBTT by inhibiting dislocation motion. They are 
generally added to increase strength or are (an unwanted) outcome of the 
processing

• For steel P, S, Si, Mo, O increase DBTT while Ni, Mg decease it.

Decrease of DBTT by Mg: formation of manganese-
sulfide (MnS) and consumption of some S. It has 
some side effects
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3. Radiation embrittlement through DBTT 
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T0 T0Temperature

Irradiation effect:
1. Strengthening
2. More brittle

43



3. Radiation embrittlement through DBTT 

Wallin’s Master Curve
Irradiation inceases T0
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4. Hydrogen embrittlement through DBTT 

• Hydrogen in alloys drastically reduces ductility in 
most important alloys:
• nickel-based alloys and, of course, both 

ferritic and austenitic steel
• Steel with an ultimate tensile strength of less 

than 1000 Mpa is almost insensitive
• A very common mechanism in Environmentally 

assisted cracking (EAC):
• High strength steel, aluminum, & titanium 

alloys in aqueous solutions is usually driven 
by hydrogen production at the crack tip (i.e., 
the cathodic reaction)

• Different from previously thought anodic 
stress corrosion cracking(SCC)

• Reason (most accepted)
• Reduces the bond strength between metal 

atoms  => easier fracture.
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Grains

Polycrystalline material:
Composed of many small crystals or grains

Grain boundary barrier to dislocation motion:
High angle grain boundaries block slip and harden 
the material
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5. Grain size

dcr dd

• Small grain size =>
    1. Lower DBTT (more ductile)
    2. Increases thoughness

 
DUCTILITY & STRENGH INCREASE 
SIMULTANEOUSLY!!!!
ONLY STRENGTHING MECHANISM THAT 
IMPROVES DUCTILITY
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Lowering Grain size

dcr dd

• Small grain size =>
    1. Lower DBTT (more ductile)
    2. Increases thoughness

 
DUCTILITY & STRENGH INCREASE SIMULTANEOUSLY!!!!
ONLY STRENGTHING MECHANISM THAT IMPROVES DUCTILITY

• Grain boundaries have higher energies (surface energy) 
      Grains tend to diffuse and get 
      larger to lower the energy

• Heat treatments that provide 
grain refinement such as air

    cooling, recrystallisation 
    during hot working help to 
    lower transition temperature.
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DBTT relation to grain size analysis

dcr(T)

d
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6.Size effect and embrittlement

• Experiment tests: scaled versions of real structures

• The result, however, depends on the size of the specimen 
that was tested

• From experiment result to engineering design: knowledge 
of size effect required

• The size effect is defined by comparing the nominal 
strength (nominal stress at failure)  σN  of geometrically 
similar structures of different sizes.

• Classical theories (elastic analysis with allowable stress): 
cannot take size effect into account

• LEFM: strong size effect
50



• Size effect is crucial in concrete structures (dam, 
bridges), geomechanics (tunnels): laboratory tests 
are small 

• Size effect is less pronounced in mechanical and 
aerospace engineering the structures or structural 
components can usually be tested at full size.

geometrically similar structures 
of different sizes

b is thickness
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Structures and tests
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Size effect (cont.)

1. Large structures are softer than small structures.
2. A large structure is more brittle and has a lower 
strength than a small structure.
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Size effect 

For very small structures the curve approaches the horizontal line and, therefore, the failure of 
these structures can be predicted by a strength theory. On the other hand, for large structures the 
curve approaches the inclined line and, therefore, the failure of these structures can be predicted by 
LEFM.

Larger size 
More brittle
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Bazant’s size effect law
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7. Rate effects on ductility
• Same materials that show temperature toughness 

sensitivity (BCC metals) show high rate effect
• Polymers are highly sensitive to strain rate (especially  for 

T > glass transition temperature)
• Strain rate 

1. Strength 
2. Ductility 

Strain rate  similar to T 
56



Strain rate effects on Impact toughness

Ki Computed using quasistatic 
relations (Anderson p.178)
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Strain rate effects on crack resistance

• Strain rate 
• J  (upper shelf of toughness; opposite to impact toughness):

• Ductile fracture of metals is primarily strain controlled. 
• J integral is elevated by high strain rates
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Crack speed effect on dynamic crack 
propagation resistance

• Strain speed 
• KID  (Insensitive at low speeds, quick increase approaching VI)
• Increasing toughness makes KID more sensitive  and grow faster
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8. Triaxial stress and confinement

Source: Tapany Udomphol, Suranaree University of Technology
http://eng.sut.ac.th/metal/images/stories/pdf/14_Brittle_fracture_and_impact_testing_1-6.pdf
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Ductile to brittle transition

Often hardening (increasing strength) reduces ductility
Phenomena affecting ductile/brittle response

1. T (especially for BCC metals and ceramics)
2. Impurities and alloying
3. Radiation
4. Hydrogen embrittlement
5. Grain size
6. Size effect
7. Rate effect
8. Confinement and triaxial stress state

Decreasing grain size is the only mechanism that 
hardens and promotes toughness
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4. Linear Elastic Fracture Mechanics (LEFM)
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4.1Griffith energy approach
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Atomistic view of fracture
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Atomistic view of fracture

r

xx0 Pc

Summary

Cause: Stress Concentration!
66
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Stress concentration

Geometry discontinuities: holes, corners, notches, cracks 
etc: stress concentrators/risers

load lines
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Stress concentration (cont.)

uniaxial

biaxial
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Elliptic hole
Inglis, 1913, theory of elasticity

!!!
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radius of curvature

stress concentration factor [-]



Griffith’s work (brittle materials)

FM was developed during WWI by English aeronautical 
engineer A. A. Griffith to explain the following observations:

• The stress needed to fracture bulk glass is around 100 MPa

• The theoretical stress needed for breaking atomic bonds is 
approximately 10,000 MPa

• experiments on glass fibers that Griffith himself conducted: 
the fracture stress increases as the fiber diameter decreases 
=> Hence the uniaxial tensile strength, which had been 

used extensively to predict material failure before Griffith, 

could not be a specimen-independent material property.

Griffith suggested that the low fracture strength observed in 
experiments, as well as the size-dependence of strength, was 
due to the presence of microscopic flaws in the bulk material.
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Griffith’s size effect experiment

“the weakness of isotropic solids... is due to the presence of discontinuities or 
flaws... The effective strength of technical materials could be increased 10 or 
20 times at least if these  flaws could be eliminated.''
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Fracture stress: discrepancy 
between theory and experiment
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2a

b

m

Cause of discrepancy: 
1. Stress approach
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Griffith’s verification experiment
• Glass fibers with artificial cracks (much larger 

than natural crack-like flaws), tension tests
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4.1.3. Cause of discrepancy: 
2. Energy approach
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Energy balance during 
crack growth

external work
surface energy

kinetic energy

internal strain energy
All changes with respect to time are caused by changes in crack 
size:

Energy equation is rewritten:

It indicates that the work rate supplied to the continuum by the applied loads is equal to the rate 
of the elastic strain energy and plastic strain work plus the energy dissipated in crack propagation

slow process
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Brittle materials: no plastic deformation

Potential energy

γs is energy required to form a unit of new surface

(two new material surfaces)

(linear plane stress, constant load)

Inglis’ solution

Griffith’s through-thickness crack

[J/m2=N/m]

7777

A = 2aB

A

A



Comparison of stress & energy 
approaches
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Griffith (1921), ideally brittle solids

Irwin, Orowan (1948), metals

plastic work per unit area of surface created

Energy equation for 
ductile materials

Plane stress

(metals)

Griffith’s work was ignored for almost 20 years
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Generalization of Energy 
equation
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Energy release rate
Irwin 1956

G: Energy released during fracture per unit of newly created 
fracture surface area

energy available for crack growth (crack driving force)

fracture energy, considered to be a material property (independent of the 

applied loads and the geometry of the body).

Energy release rate failure criterion

Crack extension force
Crack driving force

a.k.a
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Strain energy density

This work will be completely stored in the structure 
in the form of strain energy. Therefore, the external work and strain energy are 
equal to one another

Strain energy density

In terms of stress/strain

Consider a linear elastic bar of stiffness k, length L, area A, subjected to a force F, 
the work is

83



Strain energy density

Plane problems

Kolosov coefficient

Poisson’s ratio

shear modulus
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Evaluation of G
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Evaluation of G
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Evaluation of G
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Evaluation of G
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G from experiments
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G from experiment

Fixed grips

a2: OB, triangle OBC=U

a1: OA, triangle OAC=U

90

B: thickness
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G from experiment

Dead loads

B: thickness
a2: OB, triangle OBC=U

a1: OA, triangle OAC=U

OAB=ABCD-(OBD-OAC)
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G in terms of compliance

Fixed grips

inverse of stiffness

P

u
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G in terms of compliance

Fixed load

inverse of stiffness

P

u
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G in terms of compliance
Fixed grips Fixed loads

Strain energy release rate is identical for fixed grips 
and fixed loads.

Strain energy release rate is proportional to the 
differentiation of the compliance with respect to the 
crack length.
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Crack extension resistance curve (R-curve) 

R-curve

Resistance to fracture increases with growing 

crack size in elastic-plastic materials.

Irwin

crack driving 
force curve

SLOW

Irwin

Stable crack growth: fracture 
resistance of thin specimens is 
represented by a curve not a 
single parameter.
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R-curve shapes
flat R-curve

(ideally brittle materials)
rising R-curve

(ductile metals)

stable crack growth
crack grows then stops, 
only grows further if there 
is an increase of applied 
load

slope

96



Double cantilever beam (DCB) 
example
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Double cantilever beam (DCB) 
example: load control
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Double cantilever beam (DCB) 
example: displacement control
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Example
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Gc for different crack lengths are almost the same: flat R-
curve.
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4.2. Stress solutions, Stress Intensity Factor K 
(SIF)
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Elastodynamics Boundary value problem

106

Kinematics

displacement u
velocity v
acceleration a
strain 

Kinetics

stress

traction

body force b

linear momentum p
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Elastostatics Boundary value problem

107

Constitutive equation

Hook’s law
Isotropic

3D

2D (plane strain)

2D (plane stress)

Balance of linear momentum
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Displacement approach
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Stress function approach

109

What are Airy stress function approach?
Use of stress function  
Balance of linear momentum is automatically satisfied (no body force, static)

How do we obtain strains and displacements?
Strain: compliance e.g.

Displacements: Integration of 

Can we always obtain u by integration? No
3 displacements (unknowns) 

 6 strains (equations)

Need to satisfy strain 
compatibility condition(s)
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Stress function approach

• Generally no need to solve biharmonic function:
Extensive set of functions from complex analysis

• No need to solve any PDE
• Only working with the scalar stress function
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Complex numbers

111111



Stress function approach
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Crack modes

ar

113



Crack modes
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Westergaard’s complex stress 
function for mode I1937

• Constructing appropriate stress function (ignoring const. parts):

• Using 
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Westergaard’s complex stress 
function for mode I

shear modulus

Kolosov coef.
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Griffith’s crack (mode I)

boundary conditions

infinite plate is imaginary

1I

I
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Griffith’s crack (mode I)

boundary conditions

infinite plate 119



Griffith’s crack (mode I)
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Recall

singularity

Crack tip stress field

inverse square root
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Plane strain

Hooke’s law

Plane strain problems
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Stresses on the crack plane

On the crack plane

crack plane is a principal plane 
with the following principal 
stresses
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Stress Intensity Factor (SIF)

• Stresses-K:  linearly proportional

• K uniquely defines the crack tip stress field

• modes I, II and III:

• LEFM: single-parameter 

SIMILITUDE
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Stress function

Mode II problem

Boundary conditions

Check BCs
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Stress function

Mode II problem

mode II SIF

Boundary conditions
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Stress function

Mode II problem (cont.)

mode II SIF
127



Universal nature of the 
asymptotic stress field

Irwin

Westergaards, Sneddon etc.

(mode I) (mode II)
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Displacement field

Mode I: displacement field
Recall

129

Kolosov coef.



Crack face displacement

Crack Opening Displacement

ellipse
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Crack tip stress field in polar 
coordinates-mode I

stress transformation
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Principal crack tip stresses

132



Crack solution using V-Notch
• Airy stress function assumed to be

• Compatibility condition

• Final form of stress function

134

Source: Saouma:2010 Boulder 
Fracture Mechanics
Williams, 1952



Crack solution using V-Notch
• Stress values

• Boundary conditions

• Eigenvalues and eigenvectors for nontrivial solutions 

Mode I

Mode II
135



Crack solution using V-Notch
• Sharp crack

• After having eigenvalues, eigenvectors are obtained from

• First term of stress expansion

(n = 2 constant stress)

Mode I

Mode II
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Inclined crack in tension

Recall

+

Final result

12
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Cylindrical pressure vessel with an inclined 
through-thickness crack

thin-walled pressureclosed-ends
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Cylindrical pressure vessel with an inclined 
through-thickness crack

?

This is why an overcooked hotdog usually 
cracks along the longitudinal direction first 
(i.e. its skin fails from hoop stress, generated 
by internal steam pressure).

Equilibrium
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Computation of SIFs

• Analytical methods (limitation: simple geometry)

- superposition methods
- weight/Green functions

• Numerical methods (FEM, BEM, XFEM)

numerical solutions -> data fit -> SIF handbooks

• Experimental methods
- photoelasticity 
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SIF for finite size samples

Exact (closed-form) solution for SIFs: simple crack 
geometries in an infinite plate.

Cracks in finite plate: influence of external boundaries 
cannot be neglected -> generally, no exact solution
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SIF for finite size samples

force lines are compressed->> 
higher stress concentration

geometry/correction 
factor [-]

dimensional 
analysis

<
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SIFs handbook

secant function

143



SIFs handbook
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SIFs handbook
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Superposition method
A sample in mode I subjected to tension and bending:

Is superposition of SIFs of different crack modes possible?

147



Determine the stress intensity factor for an edge cracked 
plate subjected to a combined tension and bending.

thickness

Solution
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Superposition method (cont.)
Centered crack under internal pressure

This result is useful for surface flaws along the 
internal wall of pressure vessels.
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SIFs: asymmetric loadings
Procedure: build up the case from symmetric 
cases and then to subtract the superfluous 
loadings. 

Note: The circle should be in 
the middle of the plate
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Circle must be in the middle of domain (both vertically 
and horizontally)



Two small cracks at a hole

edge crack hole as a part of the crack
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Photoelasticity

Photoelasticity is an experimental method to determine the stress distribution in a material. 

The method is mostly used in cases where mathematical methods become quite cumbersome. 

Unlike the analytical methods of stress determination, photoelasticity gives a fairly accurate 

picture of stress distribution, even around abrupt discontinuities in a material. The method is an 

important tool for determining critical stress points in a material, and is used for determining 

stress concentration in irregular geometries.

Wikipedia
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K-G relationship
So far, two parameters that describe the 
behavior of cracks: K and G. 

K: local behavior (tip stresses)
G: global behavior (energy)

Irwin: for linear elastic materials, these two params are 
uniquely related

Crack closure analysis: work 
to open the crack = work to close
the crack 
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K-G relationship
Irwin

work of crack closure

B=1 (unit thickness)
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K-G relationship (cont.)
Mode I

Mixed mode 

• Equivalence of the strain energy release rate and SIF approach

• Mixed mode: G is scalar => mode contributions are additive

• Assumption: self-similar crack growth!!!

Self-similar crack growth: planar crack remains planar (      same 
direction as   )
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SIF in terms of compliance

A series of specimens with different crack lengths: measure the 
compliance C for each specimen -> dC/da -> K and G

B: thickness
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Compliance-SIF

158158



compliance rapidly increases
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K as a failure criterion
Failure criterion

• Problem 1: given crack length a, compute the maximum 
allowable applied stress 

 

• Problem 2: for a specific applied stress, compute the maximum 
permissible crack length (critical crack length)

• Problem 3: compute      provided crack length and stress at 
fracture

fracture toughness

160



Example
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5. Elastoplastic fracture mechanics
 5.1 Introduction to plasticity

 5.2. Plastic zone models
 5.3. J Integral
 5.4. Crack tip opening displacement (CTOD)
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5.2. Plastic zone models
- 1D Models: Irwin, Dugdale, and Barenbolt models

-  2D models: 
 - Plastic zone shape 
 - Plane strain vs. plane stress

168



Singular dominated zone

crack tip

K-dominated zone

(crack plane)
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Introduction
• Griffith's theory provides excellent agreement with experimental data for 

brittle materials such as glass. For ductile materials such as steel, the 
surface energy (γ) predicted by Griffith's theory is usually unrealistically 
high. A group working under G. R. Irwin at the U.S. Naval Research 
Laboratory (NRL) during World War II realized that plasticity must play a 
significant role in the fracture of ductile materials.

crack tip
Small-scale yielding: LEFM 

still applies with minor 
modifications done by G. R. 

Irwin

(SSY)
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Validity of K in presence of a 
plastic zone

crack tip Fracture process usually occurs in 
the inelastic region not the K-
dominant zone.

is SIF a valid failure criterion for materials that 
exhibit inelastic deformation at the tip ?
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Validity of K in presence of a 
plastic zone

same K->same stresses applied on the disk

stress fields in the plastic zone: the same

K still uniquely characterizes the crack tip 
conditions in the presence of a small 
plastic zone.

[Anderson]

LEFM solution
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Paradox of a sharp crack

At crack tip:

An infinitely sharp crack is merely a mathematical abstraction. 

Crack tip stresses are finite because (i) 
crack tip radius is finite (materials are 
made of atoms) and (ii) plastic 
deformation makes the crack blunt.
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5.2.1 Plastic zone shape: 1D models
- 1st order approximation
- 2nd order Irwin model
- Strip yield models (Dugdale, and Barenbolt models)

- Effective crack length
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Plastic correction: 
1st order approximation

• A cracked body in a plane stress condition

• Material: elastic perfectly plastic with yield stress 

On the crack plane

(yield occurs)

first order approximation of plastic zone size: equilibrium is not 
satisfied

stress singularity is truncated by 
yielding at crack tip
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2.Irwin’s plastic correction

176



2.Irwin’s plastic correction

stress redistribution:

Plane strain

plastic zone: a CIRCLE !!!
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Plane stress Plane strain

Von Mises Yield Criterion

178

(1 – 2 x 0.2)2 = 0.36



proposed by Dugdale and Barrenblatt

3. Strip Yield Model

• Infinite plate with though thickness crack 2a

• Plane stress condition

• Elastic perfectly plastic material

Hypotheses:

• All plastic deformation concentrates in 
a line in front of the crack.

• The crack has an effective length which 
exceeds that of the physical crack by 
the length of the plastic zone.

•    : chosen such that stress singularity 
at the tip disappears.
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SIF for plate with normal 
force at crack

Anderson, p64 180



3. Strip Yield Model (cont.)
Superposition principle

Irwin’s result

(derivation follows)

close to
0.318

0.392










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3. Strip Yield Model:
Dugdale vs Barenblatt model

Dugdale: Uniform stress

More appropriate for 
polymers

Barenblatt: Linear stress

More appropriate for 
metals
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5.2.1 Plastic zone shape: 1D models
- 1st order approximation
- 2nd order Irwin model
- Strip yield models (Dugdale, and Barenbolt models)

- Effective crack length
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Effective crack length
Irwin Dugdale

Crack tip blunting
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Example
Consider an infinite plate with a central crack of length 2a 
subjected to a uniaxial stress perpendicular to the crack 
plane. Using the Irwin’s model for a plane stress case, show 
that the effective SIF is given as follows 

Solution:

The effective crack length is

The effective SIF is thus

with
185



Consider a large central cracked plate subjected to a uniform stress 
of 130 MPa. The fracture toughness Kc=50MPa√m, the yield strength 
σys=420MPa.

(a) What is the maximum allowable crack length?
(b) What is the maximum crack length if plastic correction
is taken into account. Plane stress and Irwin’s correction.

Solution:

(previous slide)(b)

(a)
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Effective crack length
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Validity of LEFM solution

crack tip

LEFM is better applicable to materials of high yield 
strength and low fracture toughness

From Irwin, 
Dugdale, etc
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5.2.2 Plastic zone shape: 2D models
- 2D models
- plane stress versus plane strain plastic zones

189



Plastic yield criteria

von-Mises criterion Tresca criterion
Maximum shear stress

s is stress deviator tensor

3D 2D
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Plastic zone shape

Mode I, principal stresses

von-Mises criterion

plane stress

Principal stresses:

plane strain
191



Plastic zone shape

von-Mises criterion Tresca criterion

plane stress
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Plastic zone shape:
Mode I-III

193



Plastic zone sizes:Summary

Source: Schreurs (2012)
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What is the problem 
with these 2D shape 

estimates?

195



Stress not redistributed

stress redistribution 
(approximately) in 1D
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Stress redistributed for 2D

Dodds, 1991, FEM solutions
Ramberg-Osgood material model

Effect of definition of yield
(some level of ambiguity)

Effect of strain-hardening:
Higher hardening (lower n) => 
smaller zone197



Plane stress/plane strain

dog-bone shape

constrained by the 
surrounding material

• Plane stress failure: more ductile

• Plane strain failure: mode brittle
198



Plane stress/plane strain

Higher percentage of plate thickness is in plane 
strain mode for thicker plates

Plane stress

Plane strain

As the thickness increases more through the 
thickness bahaves as plane strain
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Plane stress/plane strain:
Fracture loci

Loci of maximum shear stress for plane stress and strain

200



Plane stress/plane strain:
What thicknesses are plane stress?

Change of plastic loci to plane stress mode 
as “relative B decreases”. Nakamura & 
Park, ASME 1988

Plane strain
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Plane stress/plane strain
Toughness vs. thickness

Plane strain fracture toughness     lowest K 
(safe)

(Irwin)

202
𝜎𝑌 is the yield stress



Fracture toughness tests
• Prediction of failure in real-world applications: need the value 

of fracture toughness

• Tests on cracked samples: PLANE STRAIN condition!!!

Compact Tension
Test 

ASTM (based on Irwin’s model) for plane 
strain condition (𝜎𝑌 is the yield stress NOT 
the adjusted 𝜎𝑦𝑠 ≈ 𝜎𝑌/(1 − 2𝜈)):
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Fracture toughness test

plane strain
ASTM E399

Linear fracture mechanics is only useful  when the plastic 

zone size is much smaller than the crack size
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5.3. J Integral (Rice 1958)

206



Introduction

deformation theory of plasticity can be 
utilized

Monotonic loading: an elastic-plastic material 
is equivalent to a nonlinear elastic material

Idea
Replace complicated plastic model with nonlinear elasticity (no unloading)
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J-integral
Eshelby, Cherepanov, 1967, Rice, 1968

• Components of J integral vector

• J integral in fracture

• strain energy density

• Surface traction
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J-integral Wikipedia

(1) J=0 for a closed path

(2) is path-independent

notch:traction-free

Rice used J1 for fracture characterization
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5.3. 1. Path independence of J

210



J Integral zero for a closed loop

Gauss theorem

and using chain rule:

211



J Integral zero for a closed loop
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Path independence of J-integral

J is zero over a closed path

AB, CD: traction-free crack faces

(crack faces: parallel to x-axis)

which path BC or AD should be used to 
compute J?
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5.3. 2. Relation between J and G 
(energy release property of J)

214



Energy release rate of J integral:
Assumptions
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Energy release rate of J-integral

Self-similar crack growth

crack grows, coord. axis move

nonlinear elastic

,

216



J-integral

J-integral is equivalent to the 
energy release rate for a 
nonlinear elastic material under 
quasi-static condition.

Gauss theorem,

symmetric skew-symmetric

Gauss theorem
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Generalization of J integral

• Dynamic loading
• Surface tractions on crack surfaces
• Body force
• Initial strains (e.g. thermal loading)
• Initial stress from pore pressures

cf. Saouma 13.11 & 13.12 for details
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5.3. 3. Relation between J and K

219



J-K relationship

(previous slide)

J-integral: very useful in numerical computation of SIFs

By idealizing plastic deformation 

as nonlinear elastic, Rice was able 

to generalize the energy release rate 

to nonlinear materials.
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J-K relationship
In fact both J1 (J) and J2 are related to SIFs:

Hellen and Blackburn (1975)

J1 & J2: crack advance for ( = 0, 90) degrees
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5.3. 4. Energy Release Rate, crack 
growth and R curves

222



Nonlinear energy release rate

223

Goal: Obtain J from P- Curve
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Nonlinear energy release rate

224

Goal: Obtain J from P- Curve

Similar to G!
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Nonlinear energy release rate

225

Goal: Analytical equation for J
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Nonlinear energy release rate

226

Goal: Experimental evaluation of J

Landes and Begley, ASTM 1972

• P- curves for different 
crack lengths a
 J as a function of 

• Rice proposes a method 
to obtain J with only one 
test for certain 
geometries

cf. Anderson 3.2.5 for details
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Crack growth resistance curve

228

• A: R curve is nearly vertical:
• small amount of apparent 

crack growth from blunting
•      : measure of ductile fracture 

toughness
• Tearing modulus

is a measure of crack stability

A

If the crack propagates longer we even observe a flag R value

Rare in experiments because it requires 
large geometries!
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Crack growth and stability

229

• The JR and J are similar to R and G curves for LEFM:
• Crack growth can happen when J = JR

• Crack growth is unstable when 

229



5.3. 7. Fracture mechanics versus material (plastic) 
strength

230



Governing fracture mechanism and 
fracture toughness
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a

W

P

(cracked section)

Yield:

short crack: fracture by plastic collapse!!!

high toughness materials:yielding 
before fracture

LEFM applies when

Fracture vs. Plastic collapse

P

unit thickness

232



Example
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5.3. 5. Plastic crack tip fields;  Hutchinson, Rice 
and Rosengren (HRR) solution

238



Ramberg−Osgood model

239

• Elastic model:
Unlike plasticity unloading 
in on the same line
• Higher n closer to elastic 

perfectly plastic
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Hutchinson, Rice and Rosengren(HRR) 
solution 

240

• Near crack tip “plastic” strains dominate:

• Assume the following r dependence for  and 

*

1. Bounded energy:

2.  -  relation *
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HRR solution:
Local stress field based on J

242

• Final form of HRR solution:

LEFM solution

HRR solution

J plays the role of K for 
local , , u fields
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HRR solution:Angular functions
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HRR solution:
Stress singularity

244

LEFM solution

HRR solution

Stress is still singular but with a weaker power of singularity!
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5.3. 6. Small scale yielding (SSY) versus large 
scale yielding (LSY)

245



Limitations of HRR solution

246

McMeeking and Parks, ASTM STP 668, 
ASTM 1979
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From SSY to LSY
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From SSY to LSY

248

LEFM: SSY satisfied and generally 
have Generally have

PFM (or NFM): SSY is 
gradually violated and 
generally 

LSY condition: 

Relevant parameters:
G (energy) K (stress)

Relevant parameters:
J (energy & used for stress)

No single parameter can 
characterize fracutre!
J + other parameters (e.g. T 
stress, Q-J, etc)
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LSY: When a single parameter (G, K, J, 
CTOD) is not enough?

249

Crack growing out of J-
dominant zone

Nonlinear vs plastic models



LSY: When a single parameter (G, K, J, 
CTOD) is not enough? T stress

plane strain

Plastic analysis:      is  redistributed!
Kirk, Dodds, Anderson

High negative T stress:
  - Decreases 
  - Decreases triaxiality

Positive T stress:
  - Slightly Increases               
         and increase 
triaxiality 

250



LSY: When a single parameter (G, K, J, 
CTOD) is not enough? J-Q theory

n: strain hardening in HRR analysis

Q
Crack tip
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5.4. Crack tip opening displacement (CTOD), 
relations with J and G
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Crack Tip Opening 
Displacement

COD is zero at the crack tips.
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Crack Tip Opening Displacement:
First order aproximation

(Irwin’s plastic correction, plane stress)

CTOD

Wells 1961

COD is taken as the separation of the faces of the effective crack at the tip of the physical crack
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Crack Tip Opening Displacement: Strip 
yield model

Stresses that yielded K = 0

CTOD

K = 0

For 
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CTOD-G-K relation

Under conditions of SSY, the fracture criteria 
based on the stress intensity factor, the strain 
energy release rate and the crack tip opening 
displacement are equivalent.

Fracture occurs
The degree of crack blunting increases 
in proportion to the toughness 
of the material

Wells observed:

material property 
independent of specimen 
and crack length 
(confirmed by 
experiments)
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CTOD-J relation
• When SSY is satisfied G = J so we expect: 

• In fact this equation is valid well beyond validity of LEFM and SSY

• E.g. for HRR solution Shih showed that:

•  is obtained by 90 degree method:
Deformed position corresponding to  r* = r and 
 = - forms 45 degree w.r.t crack tip)

for
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CTOD experimental 
determination

similarity of triangles

: rotational factor [-], between 0 and 1

Plastic Hinge

Rigid

For high elastic deformation contribution, elastic corrections should be added
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6. Computational fracture mechanics
 6.1. Fracture mechanics in Finite Element Methods

 6.2. Traction Separation Relations (TSRs)
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6.1Fracture mechanics in Finite Element 
Methods (FEM)
6.1.1. Introduction to Finite Element method
6.1.2. Singular stress finite elements 
6.1.3. Extraction of K (SIF), G
6.1.4. J integral

6.1.5. Finite Element mesh design for fracture mechanics
6.1.6. Computational crack growth
6.1.7. Extended Finite Element Method (XFEM)
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Numerical methods to solve PDEs
• Finite Difference (FD) & Finite Volume (FV) methods

• FEM (Finite Element Method)

• BEM (Boundary Element Method)

• MMs (Meshless/Meshfree methods)

FEM
BEM

MMs

FD
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Fracture models
• Discrete crack models (discontinuous models): 

Cracks are explicitly modeled
- LEFM
- EPFM
- Cohesive zone models

• Continuous models: Effect of (micro)cracks and 
voids are incorporated in bulk damage
- Continuum damage models
- Phase field models

• Peridynamic models: Material is modeled as a 
set of particles
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Finite Element Method

Element level: 4 Shape functions for a 
linear quad element

Global level: The nodal dof at the center node 
is shared by all four elements
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6.1Fracture mechanics in Finite Element 
Methods (FEM)
6.1.1. Introduction to Finite Element method
6.1.2. Singular stress finite elements 
6.1.3. Extraction of K (SIF), G
6.1.4. J integral

6.1.5. Finite Element mesh design for fracture mechanics
6.1.6. Computational crack growth
6.1.7. Extended Finite Element Method (XFEM)
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Isoparametric Elements
• Geometry is mapped from a parent 

element to the actual element
• The same interpolation is used for 

geometry mapping and FEM solution (in 
the figure 2nd order shape functions are 
used for solution and geometry)

• Geometry map and solution are 
expressed in terms of 

parent element Actual element

(Same number of nodes 
based on the order)

Order of element
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Singular crack tip solutions
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Isoparametric singular elements

• LEFM

singular form     only along these lines

NOT recommended

Improvement:
   -      from inside all element
Problem
   - Solution inaccuracy and sensitivity 
     when opposite edge 3-6-2 is curved

Quarter point 
Quad element

Quarter point collapsed 
Quad element

Quarter point 
Tri element

Improvement:
   -  Better accuracy and 
       less mesh sensitivity

• Elastic-
perfectly
plastic

1st order

2nd orderCollapsed Quad
elements
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Motivation: 1D quadrature element

Parent element

Find  that yields  singularity at x1
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Motivation: 1D quadrature element

Parent element
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Moving singular  position

• Transition elements: 
According to this analysis 
mid nodes of next layers move 
to ½ point from ¼ point

Lynn and Ingraffea 1977)
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6.1Fracture mechanics in Finite Element 
Methods (FEM)
6.1.1. Introduction to Finite Element method
6.1.2. Singular stress finite elements 
6.1.3. Extraction of K (SIF), G
6.1.4. J integral

6.1.5. Finite Element mesh design for fracture mechanics
6.1.6. Computational crack growth
6.1.7. Extended Finite Element Method (XFEM)
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1. K from local fields

1. Displacement

or alternatively from the first quarter point element:

Recall for 1D

Mixed mode generalization:275



1. K from local fields

2. Stress

or can be done for arbitrary angle () taking  
angular dependence f() into account

Stress  based method is less accurate because:
• Stress is a derivative field and generally is one order less accurate than displacement
• Stress is singular as opposed to displacement
• Stress method is much more sensitive to where loads are applied (crack surface or far field)
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2. K from energy approaches

1. Elementary crack advance (two FEM solutions for a and a + a)
2. Virtual Crack Extension: Stiffness derivative approach
3. J-integral based approaches (next section)

After obtaining G (or J=G for LEFM) K can be obtained from
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2.1 Elementary crack advance

For fixed grip boundary condition perform two simulations (1, a) and (2, a+a):
All FEM packages can compute strain (internal) energy Ui 

1 2

Drawback:
1. Requires two solutions
2. Prone to Finite Difference (FD) errors
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2.2 Virtual crack extension

Furthermore when the loads are constant:

• Potential energy is given by 

• This method is equivalent to J integral method (Park 1974)
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2.2 Virtual crack extension: Mixed mode

• For LEFM energy release rates G1 and G2 are given by 

• Using Virtual crack extension (or elementary crack advance) compute G1 and G2 for 
crack lengths a, a + a 

• Obtain KI and KII from: Note that there are two sets 
of solutions!
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6.1Fracture mechanics in Finite Element 
Methods (FEM)
6.1.1. Introduction to Finite Element method
6.1.2. Singular stress finite elements 
6.1.3. Extraction of K (SIF), G
6.1.4. J integral

6.1.5. Finite Element mesh design for fracture mechanics
6.1.6. Computational crack growth
6.1.7. Extended Finite Element Method (XFEM)
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J integral
Uses of J integral:

1. LEFM:  Can obtain KI and KII from J integrals (G = J for LEFM)

2. Still valid for nonlinear (NLFM) and plastic (PFM) fracture mechanics

Methods to evaluate J integral:
1. Contour integral: 

2. Equlvalent (Energy) domain integral (EDI): 
• Gauss theorem: line/surface (2D/3D) integral          surface/volume integral
• Much simpler to evaluate computationally
• Easy to incorporate plasticity, crack surface tractions, thermal strains, etc.
• Prevalent method for computing J-integral

Line integral
Volume integral
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J integral: 1.Contour integral

• Stresses are available and also more accurate at Gauss points 
• Integral path goes through Gauss points

Cumbersome to formulate 
the integrand, evaluate 
normal vector, and integrate 
over lines (2D) and surfaces 
(3D) 

Not commonly used
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J integral: 2.Equivalent Domain 
Integral (EDI)

General form of J integral

Inelastic stress
Can include (visco-) plasticity, and 
thermal stresses

Elastic
Plastic Thermal ( 

temperature)

Kinetic energy density 

: J contour approaches Crack tip (CT)

Accuracy of the solution deteriorates at CT 

Inaccurate/Impractical evaluation of J using contour integral
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J integral: 2. EDI: Derivation
Divergence theorem: Line/Surface (2D/3D) integral              Surface/Volume Integral

2D mesh covers 
crack tip

Original J integral contour

Surface integral after 
using divergence theorem

• Contour integral added to create closed surface
• By using q = 0 this integral in effect is zero

Application in FEM meshes

Zero integral on 1 (q = 0)

Divergence theorem
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J integral: 2. EDI

Plasticity effects
Thermal effects

Body force Nonzero crack 
surface traction

General form of J

Simplified Case: 
(Nonlinear) elastic, no thermal strain, no body force, traction free crack surfaces 

This is the same as deLorenzi’s approach where
finds a physical interpretation (virtual crack extension)  
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J integral: 2. EDI FEM Aspects
• Since J0      0 the inner J0 collapses to the crack tip (CT)
• J1 will be formed by element edges
• By using spider web (rozet) meshes any

reasonable number of layers can be used
to compute J:

• Spider web (rozet) mesh:

• One layer of triangular elements (preferably singular, quadrature point 
elements)

• Surrounded by quad elements

1 layer 2 layer 3 layer
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J integral: 2. EDI FEM Aspects
• Shape of decreasing function q:

Pyramid q function Plateau q function

• Plateau q function useful when inner elements are not very accurate:
e.g. when singular/quarter point elements are not used

These elements do not contribute to J
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J integral: Mixed mode loading

• For LEFM we can obtain KI, KII, KIII from J1, J2, GIII:
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6.1Fracture mechanics in Finite Element 
Methods (FEM)
6.1.1. Introduction to Finite Element method
6.1.2. Singular stress finite elements 
6.1.3. Extraction of K (SIF), G
6.1.4. J integral

6.1.5. Finite Element mesh design for fracture mechanics
6.1.6. Computational crack growth
6.1.7. Extended Finite Element Method (XFEM)
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Different elements/methods to compute K

• J integral EDI method is by far the most accurate method
• Interpolation of K from u is more accurate from : 1) higher convergence 

rate, 2) nonsingular field. Unlike  it is almost insensitive to surface crack or 
far field loading

• Except the first contour (J integral) or very small r the choice of element has 
little effect

J integral EDI K from stress K from displacement u
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Different elements/methods to compute K:
Effect of adaptivity on local field methods

Even element h-refinement cannot improve K values by much particularly for 
stress based method

K from stress K from displacement u
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General Recommendations

1. Crack surface meshing:
• Nodes in general should be duplicated:

• Modern FEM can easily handle duplicate nodes

• If not, small initial separation is initially introduced

• When large strain analysis is required, 
initial mesh has finite crack tip radius. 
The opening should be smaller than 
5-10 times smaller than CTOD. Why?
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General Recommendations

2nd order

2. Quarter point vs mid point elements / Collapsed elements around the crack 
tip

• For LEFM singular elements triangle quarter 
elements are better than normal tri/quad, and 
quarter point quad elements (collapsed or not)

• Perturbation of quarter point by e results in O(ge2) error in K (g = h/a)

• For elastic perfectly plastic material collapsed quad elements (1st / 2nd 
order) are recommended

• Use of crack tip singular elements are more important for local field 
interpolation methods (u and ). EDI J integral method is less sensitive to 
accuracy of the solution except the 1st contour is used.

1st order
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General Recommendations

3. Shape of the mesh around a crack tip
a) Around the crack tip triangular singular elements are recommended 

(little effect for EDI J integral method)
b) Use quad elements (2nd order or higher) around the first contour
c) Element size: Enough number of elements should be used in region of 

interest: rs, rp, large strain zone, etc.
d) Use of transition elements away from the crack tip although increases 

the accuracy has little effect

Spider-web mesh (rozet)

a

b

d
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General Recommendations

4. Method for computing K
• Energy methods such as J integral and G virtual crack extension (virtual 

stiffness derivative) are more reliable
• J integral EDI is the most accurate and versatile method

• Least sensitive method to accuracy 
of FEM solution at CT particularly if 
plateau q is used

• K based on local fields is the least accurate and most sensitive to CT 
solution accuracy.
• Particularly stress based method is not recommended.
• Singular/ quarter point elements are recommended for these methods 

especially when K is obtained at very small r
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6.1Fracture mechanics in Finite Element 
Methods (FEM)
6.1.1. Introduction to Finite Element method
6.1.2. Singular stress finite elements 
6.1.3. Extraction of K (SIF), G
6.1.4. J integral

6.1.5. Finite Element mesh design for fracture mechanics
6.1.6. Computational crack growth
6.1.7. Extended Finite Element Method (XFEM)
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What’s wrong with FEM for crack 
problems

• Element edges must conform to the crack geometry: 
make such a mesh is time-consuming, especially for 
3D problems.

• Remeshing as crack advances: difficult. Example:

Bouchard et al. CMAME 
2003
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Capturing/tracking cracks

Fixed mesh Crack tracking XFEM enriched 
elements

Crack/void capturing by 
bulk damage models

Brief overview in 
the next section

Brief overview in 
continuum damage models
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Fixed meshes
• Nodal release method (typically done on fixed meshes)

• Crack advances one element edge at a time by releasing FEM nodes
• Crack path is restricted by discrete geometry

• Also for cohesive elements they can be used for both extrinsic and intrinsic schemes. For 
intrinsic ones, cohesive surfaces between all elements induces an artificial compliance (will 
be explained later)
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Adaptive meshes
• Adaptive operations align element boundaries with crack direction

Abedi:2010

Cracks generated by refinement options Element edges move to desired direction

Element splitting:
Smoother crack path by element splitting: 
cracks split through and propagate between 
newly generated elements
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6.1Fracture mechanics in Finite Element 
Methods (FEM)
6.1.1. Introduction to Finite Element method
6.1.2. Singular stress finite elements 
6.1.3. Extraction of K (SIF), G
6.1.4. J integral

6.1.5. Finite Element mesh design for fracture mechanics
6.1.6. Computational crack growth
6.1.7. Extended Finite Element Method (XFEM)
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Finite Elements for singular 
crack tip solutions

• Direct incorporation of singular terms: 
e.g. enriched elements by Benzley 
(1974), shape functions are enriched 
by KI, KII singular terms
• XFEM method falls into this group 

(discussed later)
• Quarter point (LEFM) and Collapsed 

half point (Elastic-perfectly plastic) 
elements: By appropriate positioning 
of isoparametric element nodes 
create strain singularities 

More accurate

Can be easily used in FEM software
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Extended Finite Element Method 
(XFEM)

standard part enrichment part

Partition of Unity (PUM) enrichment function

known characteristics of the problem (crack tip singularity, displacement 
jump etc.) into the approximate space.

Belytschko et al 1999 set of enriched nodes
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XFEM: enriched nodes

nodal support

enriched nodes = nodes whose support is cut by the item 
to be enriched

enriched node I: standard degrees of freedoms 
(dofs)   and additional dofs 
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XFEM for LEFM
crack tip with known 

displacement

crack edge
displacement: discontinuous across 

crack edge
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XFEM for LEFM (cont.)

blue nodes

red nodes

Crack tip enrichment functions:

Crack edge enrichment functions:
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XFEM for cohesive cracks

No crack tip solution is known, no tip 
enrichment!!!

Wells, Sluys, 2001

not enriched to ensure zero 
crack tip opening!!!
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XFEM: examples

CENAERO, M. Duflot

Northwestern Univ.
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Meshfree methods

Elastic-plastic fracture Shaofan Li 2012

Bordas et al.
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6.2. Traction Separation Relations (TSRs)

312



Cohesive models

⚫ Cohesive models remove stress singularity predicted by Linear Elastic 
Fracture Mechanics (LEFM) 

: Stress scale

: Displacement scale

: Length scale
Traction is related to displacement jump across fracture surface
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Sample applications of cohesive models

fracture of polycrystalline material

delamination of composites
fragmentation

Microcracking
 and branching

314



Cohesive models


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Process zone (Cohesive zone)
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Shape of TSR

bilinear softeninglinear softeningexponential

smoothed trapezoidaltrapezoidalcubic polynomial

317



Cohesive model Table
Source: Namas Chandra, Theoretical and Computational Aspects of Cohesive Zone Modeling, Department of 

Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University
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Cohesive model Table
Source: Namas Chandra, Theoretical and Computational Aspects of Cohesive Zone Modeling, Department of 

Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University
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Scales of cohesive model

2 out of the three are independent

Process zone size 

Influences time step for time 
marching methods
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Why process zone size is important?
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When LEFM results match cohesive solutions?

crack speed process zone size

322



Resistance (fracture toughness) versus work of 
separation

323

• Fracture toughness (): LEFM: Energy needed to create one unit surface of crack
• Work of separation (): CFM: Energy needed to entirely debond a point in time per area 

(following a traction-separation-relation)
• Relation between  and G:

• Dynamic part () goes to zero when:
• Steady state crack propagation (crack speed does not 

change).
• When the crack speed tends to Rayleigh wave speed (cR)

LEFM CFM 
comparison:
set  = 

 accurate except 
unsteady / low 
crack speed OR if 
SSY is not satisfied



Artificial compliance for intrinsic cohesive models

324



4.3 Mixed mode fracture
4.3.1 Crack propagation criteria
 a) Maximum Circumferential Tensile Stress
 b) Maximum Energy Release Rate
 c) Minimum Strain Energy Density
4.3.2  Crack Nucleation criteria
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Motivation: Mixed mode crack 
propagation criteria

• Pure Mode I fracture:

• Mixed mode fracture (in-plane)

• Note the similarity with yield surface plasticity model:

Example: von Mises yield criterion
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Motivation: Experiment verification of the 
mixed-mode failure  criterion

Data points do not fall exactly on the circle.

a circle in 
KI, KII plane

self-similar growth
327



Mixed-mode crack growth

Cracks will generally propagate along a curved 

surface as the crack seeks out its path of least 

resistance.

Combination of mode-I, mode-II and mode-III loadings: 
mixed-mode loading.

Only a 2D mixed-mode loading (mode-I and mode-II) 
is discussed.
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4.3 Mixed mode fracture
4.3.1 Crack propagation criteria
 a) Maximum Circumferential Tensile Stress
 b) Maximum Energy Release Rate
 c) Minimum Strain Energy Density
4.3.2  Crack Nucleation criteria
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Maximum circumferential stress 
criterion

Erdogan and Sih

(from M. Jirasek) principal stress
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Maximum circumferential stress 
criterion
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Maximum circumferential stress 
criterion

0
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Maximum circumferential stress 
criterion

Fracture criterion
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Experiment

XFEM
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Modifications to maximum 
circumferential stress criterion
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4.3 Mixed mode fracture
4.3.1 Crack propagation criteria
 a) Maximum Circumferential Tensile Stress
 b) Maximum Energy Release Rate
 c) Minimum Strain Energy Density
4.3.2  Crack Nucleation criteria
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Maximum Energy Release Rate

G: crack driving force -> crack will grow in the 
direction that G is maximum
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Maximum Energy Release Rate

Stress intensity  factors for kinked crack extension:
Hussain, Pu and Underwood (Hussain et al. 1974)
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Maximum Energy Release Rate

Maximization condition
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4.3 Mixed mode fracture
4.3.1 Crack propagation criteria
 a) Maximum Circumferential Tensile Stress
 b) Maximum Energy Release Rate
 c) Minimum Strain Energy Density
4.3.2  Crack Nucleation criteria
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Strain Energy Density (SED) 
criterion Sih 1973
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Strain Energy Density (SED) 
criterion

Minimization condition

Pure mode I (0 degree has smallest S)
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Strain Energy Density (SED) 
criterion
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Comparison:
a) Crack Extension angle

Zoom view (low KII component)

Good agreement for low KII 

~ 70 degree angle for mode II !
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Comparison:
b) Locus of crack propagation

Most conservative

Least conservative
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Mixed mode criteria:
Observations

1. First crack extension 0 is obtained followed by on whether crack extends in 0 direction 
or not.

2. Strain Energy Density (SED) and Maximum Circumferential Tensile Stress require an r0 
but the final crack propagation locus is independent of r0.

3. SED theory depends on Poisson ratio .

4. All three theories give identical results for small ratios of KII/KI and diverge slightly as 
this ratio increases

5. Crack will always extend in the direction which attempts to minimize KII/KI. 
6. For practical purposes during crack propagation all three theories yield very similar 

paths as from 4 and 5 cracks extend mostly in mode I where the there is a better 
agreement between different criteria
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Implication on close to mode I crack 
propagation

347

*Cotterell, Brian, and JRf Rice. "Slightly curved or kinked cracks." International journal of fracture 16.2 (1980): 155-169
[1] N.V. Banichuk, "Determination of the Form of a Curvilinear Crack by Small Parameter Technique" Izv. An SSR, MTT 7, 2 (1970) 130-7 (in Russian).
[2] R.V. Goldstein and R.L. Salganik, "Plane Problem of Curvilinear Cracks in an Elastic Solid", Izv. An SSR, MIT 7, 3 (1970) 69-82 (in Russian).
[3] R.V. Goldstein and R.L. Salganik, International Journal of Fracture 10 (1974) 507-23.

Van-Bac Pham,Hans-Achim Bahr,Ute Bahr,Herbert Balke, Hans-Jürgen Weiss, Global bifurcation criterion for oscillatory crack path 
instability, PHYSICAL REVIEW E 77, 066114 (2008)
[21] B. Cotterell and J. R. Rice, Int. J. Fract. 16, 155 (1980)
[25] M. Amestoy and J. B. Leblond, Int. J. Solids Struct. 29, 465 (1992)



Example of critical local symmetry

348

*Cotterell, Brian, and JRf Rice. "Slightly curved or kinked cracks." International journal of fracture 16.2 (1980): 155-169

Van-Bac Pham,Hans-Achim Bahr,Ute Bahr,Herbert Balke, Hans-Jürgen Weiss, Global bifurcation criterion for oscillatory crack path 
instability, PHYSICAL REVIEW E 77, 066114 (2008)



4.3 Mixed mode fracture
4.3.1 Crack propagation criteria
 a) Maximum Circumferential Tensile Stress
 b) Maximum Energy Release Rate
 c) Minimum Strain Energy Density
4.3.2  Crack Nucleation criteria
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Crack nucleation criterion
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Crack nucleation criterion
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8. Fatigue
 8.1. Fatigue regimes

 8.2. S-N, P-S-N curves
 8.3. Fatigue crack growth models (Paris law)
  - Fatigue life prediction
 8.4. Variable and random load
  - Crack retardation due to overload
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Fatigue examples

353

(source Course presentation S. Suresh MIT)



Fatigue fracture is prevalent!

354

• Deliberately applied load reversals (e.g. rotating systems)
• Vibrations (machine parts)
• Repeated pressurization and depressurization (airplanes)
• Thermal cycling (switching off electronic devices)
• Random forces (ships, vehicles, planes) 

(source: Schreurs fracture notes 2012)

 Fatigue occurs always and everywhere and is a major 
source of mechanical failure



Fatigue
• Fatigue occurs when a material is subjected to repeated loading and unloading (cyclic 

loading).

• Under cyclic loadings, materials can fail (due to fatigue) at stress levels well below their yield 
strength or crack propagation limit-> fatigue failure.

• ASTM defines fatigue life, Nf, as the number of stress cycles of a specified character that a 
specimen sustains before failure of a specified nature occurs.

blunting

resharpening

355

http://en.wikipedia.org/wiki/ASTM_International
http://en.wikipedia.org/wiki/Structural_failure


Fatigue striations

356

Fracture surface of a 2024-T3 aluminum alloy 
(source S. Suresh MIT)

Fatigue crack growth:
Microcrack formation in accumulated slip 
bands due to repeated loading

Striation caused by individual microscale 
crack advance incidents



Fatigue Regimes

• Very high cycle and high cycle fatigue:
• Stresses are well below yield/ultimate strength.
• There is almost no plastic deformation (in terms of strain and energy ratios)
• Fatigue models based on LEFM theory (e.g. SIF K) are applicable.
• Stress-life approaches are used (stress-centered criteria)

• Low cycle and very low cycle fatigue:
• Stresses are in the order of yield/ultimate strength.
• There is considerable plastic deformation.
• Fatigue models based on PFM theory (e.g. J integral) are applicable.
• Strain-life approaches are used (strain-centered criteria)
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Cyclic loadings

load ratio

358



Cyclic vs. static loadings

• Static: Until K reaches Kc, crack will not grow

• Cyclic: K applied can be well below Kc, crack still 
grows!!!

• 1961, Paris Erdogan used the theory of LEFM to 
explain fatigue cracking successfully. 

• Methodology: experiments first, then empirical 
equations are proposed.
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1. Initially, crack growth rate is small
2. Crack growth rate increases rapidly when a is large
3. Crack growth rate increases as the applied stress increases

360



S-N curve
Reminder: ASTM defines fatigue life, Nf, as the number of stress cycles of a specified character 
that a specimen sustains before failure of a specified nature occurs.

S-N curve

✴Stress->Nf
✴Nf->allowable S

scatter!!!

endurance limit (g.han keo dai)

361361

http://en.wikipedia.org/wiki/ASTM_International
http://en.wikipedia.org/wiki/Structural_failure


S-N-P curve: scatter effects

362362



Effect of mean stress

363363

Other correction factor

Approach 1:
Master diagramApproach 2:

Correction-factor formulas



Constant variable cyclic load

crack growth rate

SSY

crack growth models
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Crack growth data

1 2

3

365365



Paris’ law (fatigue)

Paris’ law

Fatigue crack growth behavior 
in metals

(Power law relationship for fatigue crack 
growth in region II)

Paris’ law is the most popular fatigue crack growth model

N: number of load cycles

Paris' law can be used to quantify the residual life 

(in terms of load cycles) of a specimen given a particular crack size.

I

II

(dormant period)

base 10 logarithm

metals
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Fatigue crack growth stages

367

(source Course presentation S. Suresh MIT)



Fatigue crack growth stages

368

(source Course presentation S. Suresh MIT)



Paris’ law

are material properties that must be 
determined experimentally from a log(delta 
K)-log(da/dN) plot.

not depends on load ratio R

369

m
2-4 metals
4-100 ceramics/ polymers



Other fatigue models

Forman’s model (stage II-III) Paris’ model
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Crack closure
Elber - At low loads, the compliance of 

cracked specimens are close to that 
of un-cracked specimens.

- Contact of crack faces: 
crack closure

Kop: opening SIF

- Fatigue crack growth occurs only 
when crack is fully open.
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Tension/compression cyclic 
loads

372



Fatigue life calculation

373

(source Course presentation S. Suresh MIT)



Fatigue life calculation

374

(source Course presentation S. Suresh MIT)



Fatigue life calculation

375

(source Course presentation S. Suresh MIT)



Fatigue life calculation:
Initial crack length a0

376

(source Course presentation S. Suresh MIT)



Nondestructive testing (NDT)
Nondestructive Evaluation (NDE), nondestructive Inspection (NDI)

NDT is a wide group of analysis techniques used in science and industry to 
evaluate the properties of a material, component or system without causing 
damage

NDT: provides input (e.g. crack size) to fracture analysis

inspection time

safety factor s

(Paris)
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Fatigue life calculation:
Final crack length af

378

(source Course presentation S. Suresh MIT)



Fatigue life calculation:
Crack-tolerant design

379

(source Course presentation S. Suresh MIT)



Fatigue life calculation:
Example

• Given: Griffith crack, 

• Question: compute

analytical 
integration

measurement
380



Numerical integration of 
fatigue law

tedious to compute

381



Importance of 
initial crack length

382



Fatigue design philosophies:
Safe-life approach

383

(source Course presentation S. Suresh MIT)



Fatigue design philosophies:
Fail-safe approach

384

(source Course presentation S. Suresh MIT)



Fatigue design philosophies:
Case study

385

(source Course presentation S. Suresh MIT)



Fatigue design philosophies:
Case study

386

(source Course presentation S. Suresh MIT)



Miner’s rule for variable load amplitudes

number of cycles a0 to ai

number of cycles a0 to ac

1945

Shortcomings:

1. sequence effect not considered
2. damage accumulation is
    independent of stress level

Nᵢ/Nif : damage
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Influence of sequence of loading

388

(source Course presentation Hanlon, S. Suresh MIT)



Influence of sequence of loading

389

(source Course presentation Hanlon, S. Suresh MIT)



Influence of sequence of loading

390

(source Course presentation Hanlon, S. Suresh MIT)



Variable amplitude cyclic loadings

history variables
plasticity: history dependent

plastic wake
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Overload and crack retardation
It was recognized empirically that the application of a tensile overload in a constant amplitude cyclic load 
leads to crack retardation following the overload; that is, the crack growth rate is smaller than it would 
have been under constant amplitude loading.
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Crack retardation

Point A: plastic 
point B: elastic

After unloading:  point A 
and B has more or less the 
same strain -> 
point A : compressive stress.
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Crack retardation

a large plastic zone at overload has 
left behind

residual compressive plastic zone

close the crack->crack retards
394



Overload and crack retardation
It was recognized empirically that the application of a tensile overload in a constant amplitude cyclic 
load leads to crack retardation following the overload; that is, the crack growth rate is smaller than it 
would have been under constant amplitude loading.
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Fatigue crack inhibition:
Shot-peening

396

(source Course presentation Hanlon, S. Suresh MIT)



Fatigue crack inhibition:
Shot-peening

397

(source Course presentation Hanlon, S. Suresh MIT)



Fatigue crack inhibition:
Shot-peening

398

(source Course presentation Hanlon, S. Suresh MIT)



Fatigue crack inhibition:
Shot-peening

399

(source Course presentation Hanlon, S. Suresh MIT)



Fatigue crack inhibition:
Shot-peening

400

(source Course presentation Hanlon, S. Suresh MIT)



Damage tolerance design

1. Determine the size of initial defects    ,      NDI

2. Calculate the critical crack size     at which failure 
would occur

3. Integrate the fatigue crack growth equations to 
compute the number of load cycles for the crack to 
grow from initial size to the critical size

4. Set inspection intervals 

(stress concentration: possible crack sites)

1970s

402



Examples for Fatigue 

log10(x)

403



Forman’s model

m
C and m in Forman’s model are different from those in Paris’s model.404



9. Dynamic fracture mechanics and rate effects
9.1. LEFM solution fields
9.2. Dynamics of moving crack tip, process zone size, crack 
speed
9.3. Crack path instabilities

412



Dynamic stress intensity factor

413

Crack speed

Mode I

Mode II



Dynamic angular dependence functions

414

Longitudinal and shear wave speeds are

3D and 2D plane strain



Longitudinal (pressure) and shear 
waves

415

link

link

Pressure wave front

Shear wave front

https://www.youtube.com/watch?v=hqvGWd0S_rw


9. Dynamic fracture mechanics and rate effects
9.1. LEFM solution fields
9.2. Dynamics of moving crack tip, process zone size, crack 
speed
9.3. Crack path instabilities
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Rayleigh wave speed limit

417

For one material under mode I maximum possible crack speed is Rayleigh wave 
speed where angular functions tend to infinity:



Dynamic stress intensity factor

418

Note that k(v) approaches 0 as the crack speed tends to Rayleigh wave speed.



Dynamic energy release rate

419

• K, G relation:

• Remember that for static case:

• Static limit:

• Rayleigh speed limit (G tends to infinity)



Dynamic crack propagation criterion

420

• Dynamic Griffith criterion:
    Crack propagates when energy release rate reaches 
 fracture toughness 0 (resistance):

• Noting that:

• For mode I we obtain:



Dynamic crack propagation criterion

421

Final note:
fracture toughness 0 itself depends on crack 
speed v!



Example of dynamic fracture

422

• Infinite domain under dynamic mode I
load

• Static intensity factor is evaluated as,

• Crack propagates when                                          that is,

• Crack initiation time then is,

   

Rayleigh wave speed limit



Reminder: 
Fracture process zone in dynamic fracture
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424

Small scale yielding in dynamic fracture



Super-shear crack propagation

425



Crack propagation speed background
• For a homogeneous solid, crack speed cannot exceed Rayleigh wave speed (cR).

• In practice, speed often does not exceed 50% of cR.
• Experiment with two weakly joined identical solids, where the weak interface confines the 

crack to the plane, an interfacial crack indeed approaches cR.

Washabaugh, P. D. & Knauss, W. G. 1994 A 
reconciliation of dynamic crack velocity and Rayleigh 
wave speed in isotropic brittle solids. Int. J. Fracture 
65, 97{114



Do cracks do really reach Rayleigh speed?

427

Sharon Fineberg:
mirror, mist, hackle patterns as the crack accelerates

• Crack starts oscillating well before reaching Rayleigh wave speed VR (cR)
• Crack speed does not reach VR (cR)!
• For this material critical speed vc = 0.36 VR



Do cracks do really reach Rayleigh speed?

428

• Crack dynamics does not have interia →
• Crack reaches Rayleigh wave speed at instances



Cases that the crack speed exceed Rayleigh wave 
speed: Dissimilar material interfaces

• Crack can propagate on an interface between dissimilar solids at speeds between the smallest 
and the largest sonic speeds of the constituent solids.
• Assuming the existence of a sharp crack tip:

• The stress field is singular not only at the crack tip, but also along the shock front. 
• The singularity exponents differ from one half.   →
• the energy release rate is either zero or infinite.



Crack propagation in homogeneous medium

Yu, H.H., Suo, Z., 2000b. Intersonic crack growth on an interface. Proceedings of the Royal Society 
of London, Series A (Mathematical, Physical and Engineering Sciences) 456, 223–46.

Mode I Mode II



Possibilities of supershear crack propagation

Yu, H.H., Suo, Z., 2000b. Intersonic crack growth on an interface. Proceedings of the Royal Society 
of London, Series A (Mathematical, Physical and Engineering Sciences) 456, 223–46.



Possibilities of supershear crack propagation



Possibilities of supershear crack propagation:
Burridge–Andrews mechanism



Possibilities of supershear crack propagation: MACH 
cones



Possibilities of supershear crack propagation

Earthquake and wave propagation

Super shear rupture

Collaborators: R. Haber, J. Erickson, A. Elbanna (UIUC)



9. Dynamic fracture mechanics and rate effects
9.1. LEFM solution fields
9.2. Dynamics of moving crack tip, process zone size, crack 
speed
9.3. Crack path instabilities

439



Do cracks accelerate to Rayleigh speed?

440

Sharon Fineberg:
mirror, mist, hackle patterns as the crack accelerates

• Crack starts oscillating well before reaching Rayleigh wave speed VR (cR)
• Crack speed does not reach VR (cR)!
• For this material critical speed vc = 0.36 VR



Sample fracture patterns for brittle materials?

441

Murphy 2006, Dynamic crack bifurcation in PMMA
Sample simulation

Branching only occurred for thicker specimens and very short notch depths

Successful branching appears to take place when 
micro-cracks form a sufficient distance from the main 
crack tip to allow their subsequent propagation to 
take place as opposed to being arrested by the arrival 
of an unloading wave from the main crack.



Sample fracture patterns for brittle materials

442

1. Too much energy: a single crack cannot dissipate that much energy 
particularly in brittle materials

2. Yoffe’s instability: Angles other than 0 degree will have maximum 
circumferential stress!

• Gao: 1993: Wavy crack path to have a higher energy release rate



Effect of T-Stress

443

[6] Streit R, Finnie I. An experimental investigation of crack-path directional stability. Exp Mech 1980;20:17–23.
[7] Cotterell B, Rice JR. Slightly curved or kinked cracks. Int J Fracture 1980;16:155–69.
[8] Ramulu M, Kobayashi AS. Dynamic crack curving—a photoelastic evaluation. Exp Mech 1983;23:1–9.
[9] Ramulu M, Kobayashi AS, Kang BSJ, Barker DB. Further studies on dynamic crack branching. Exp Mech 
1983;23:431–7.

Murphy 2006, Dynamic crack bifurcation in PMMA

For small crack growth under nominally Mode I loading, the straight crack 
path has been shown to be [Cotterell, Rice: 1980]:
• Stable when T < 0 
• Unstable when T > 0

Melin, Solveig. "The influence of the T-stress on the directional stability of cracks." International 
Journal of Fracture 114.3 (2002): 259-265.

• A critical role of the sign of the T -stress applies only to the situation of single crack growing in a large plate
• Counter examples: Array of collinear cracks, wedge cracks, etc.



Crack branching K-critical value
Relation to T-stress

444

Ramulu M, Kobayashi AS, Kang BSJ, Barker DB. Further studies on dynamic crack branching. Exp Mech 1983;23:431–7

T < 0 has suppressing effect

Branching takes place at a constant value of KI



Energetic argument for crack branching

445

Katzav, E., M. Adda-Bedia, and Rodrigo Arias. "Theory of dynamic crack branching in brittle materials." International Journal of Fracture 143.3 (2007): 245-271.

Branching takes place when the energy for 1 crack is equal to the energy of 2 bifurcated cracks

Eshelby JD (1970) Energy relations and the energy–momentum tensor in continuum mechanics. In: Kanninen MF, 
Adler WF, Rosenfield AR, Jaffee RI (eds) Inelastic behaviour of solids. McGraw-Hill, New York, pp 77–115

In the single crack case,  a growth criterion for a branched crack must be based on the equality between the energy 
flux into the two propagating tips and the energy required to open the material and create new surfaces as a result 
of this propagation (Eshelby 1970).

• The jump in the energy release rate due to branching is maximized when the branches start to 
propagate very slowly. 

• The branching of a single propagating crack under tensile loading was found to be energetically 
possible when its speed exceeds a certain critical value (Adda-Bedia 2005).

Adda-Bedia M (2005) Brittle fracture dynamics with arbitrary paths- III.The branching instability under general loading. J Mech Phys Solids 53:227–248
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