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Outline

Brief recall on mechanics of materials

- stress/strain curves of metals, concrete
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Linear Elastic Fracture Mechanics (LEFM)

- Energy approach (Griffith, 1921,
Orowan and Irwin 1948)
- Stress intensity factors (Irwin, 1960s)

LEFM with small crack tip plasticity

- Irwin’s model (1960) and strip yield model

- Plastic zone size and shape

Elastic-Plastic Fracture Mechanics

- Crack tip opening displacement
(CTOD), Wells 1963

- J-integral (Rice, 1958)

Dynamic Fracture Mechanics
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- utline (cont.)

- Fatigue crack propagation & life prediction
- Paris law

A
ultimate fracture
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Ductile versus Brittle Fracture
- Stochastic fracture mechanics
- Microcracking and crack branching in brittle
fracture
Brittle Fracture Ductile Fracture
Steel at 80 K g
| e DyicFractrBifurcation PMMA
Murphy 2006
Steel at 300 K RolledAlloys.com

quippy documentation (www.jrkermode.co.uk)



http://www.jrkermode.co.uk

Outline (cont.

Computational fracture mechanics

- FEM aspects:
- Isoparametric singular elements
- Calculation of LEFM/EPFM Integrals
- Adaptive meshing, XFEM

Singular Element

- Cohesive crack model (Hillerborg, 1976)
- Cont|nuum Damage MeChan|CS http://www.fgg.uni-lj.si/~/pmoze/ESDEP/master/toc.htm
- size effect (Bazant)

Cracks in FEM Adaptive mesh XFEM bulk damage
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Definitions

® Crack, Crack growth/propagation

® A fracture is the (local) separation of an object
or material into two, or more, pieces under the
action of stress.

® Fracture mechanics is the field of mechanics
concerned with the study of the propagation of
cracks in materials. It uses methods of
analytical solid mechanics to calculate the
driving force on a crack and those of
experimental solid mechanics to characterize
the material's resistance to fracture (Wiki).



http://en.wikipedia.org/wiki/Mechanics
http://en.wikipedia.org/wiki/Solid_mechanics
http://en.wikipedia.org/wiki/Fracture

Objectives of FM
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® What is the residual strength as a function of crack size?

® \What is the critical crack size?

® How long does it take for a crack to grow from a certain
initial size to the critical size?



Approaches to fracture

4 )
® Stress analysis

® Energy methods covered in

the course

® Computational fracture mechanics
\ J

® Micromechanisms of fracture (eg. atomic level)

® Experiments

® Applications of Fracture Mechanics



Design philosophies

The component is considered to be free of defects after
fabrication and is designed to remain defect-free during
service and withstand the maximum static or dynamic
working stresses for a certain period of time. If flaws, cracks,
or similar damages are visited during service, the
component should be discarded immediately.

® Damage tolerance

The component is designed to withstand the maximum
static or dynamic working stresses for a certain period of
time even in presence of flaws, cracks, or similar damages of
certain geometry and size.

11



New Failure analysis

Stresses o f(ﬁfafl:@c) =0
) Fracture
1970s Flaw size a toughness

Fracture Mechanics (FM)

- FM plays a vital role in the design of every critical structural or machine component in which
durability and reliability are important issues (aircraft components, nuclear pressure vessels,
microelectronic devices).

- has also become a valuable tool for material scientists and engineers to guide their efforts in

developing materials with improved mechanical properties.
12



1. Preliminaries
2. History
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Indicial notation

a 3D vector
X = {mlu L9, 333}

[x|| = /2T + 23 + 23

two times repeated index=sum,
summation/dummy index
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i: free index (appears precisely once in

OxgNg + OzyNy = Tz each side of an equation)
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Engineering/matrix notation

o
X = | L2

X3 T

- T 1x|| =x"x |x|| = VTiz;
Voigt notation
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Stress/strain curve

£

Stress vs. Strain curve typical &
of aluminum

1. Ultimate strength

2. Yield strength

3. Proportional limit stress

4. Fracture

5. Offset strain (typically 0.2%)

necking=decrease of cross-sectional area
Wikipedia due to plastic deformation

1: ultimate tensile strength -



Principal stresses
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Material classification /
Tensile test

Elastic Visoelastic
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Strain energy density

1 Poisson’s ratio
U = + o0, +07) —%amay + 0,0,

QE( :
‘|‘0'sz) | 21 (T:Ey T Tg,?z T Tgm)
B E
Plane problems H= 2(1 + v) shear modulus
1 [k+1 ]
U = 1 1 (O‘i + 0‘5) — 2(0z0, — ’r:fy)

3 —4v plane strain
3—V

1+ v

Kolosov coefficient -
plane stress
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3.1 Fracture modes
3.2 Ductile fracture

23



Fracture

Fracture: separation of a body into pieces due to stress, at
temperatures below the melting point.

Steps 1n fracture:
» crack formation
» crack propagation

Depending on the ability of material to undergo plastic
deformation before the fracture two fracture modes can be
defined - ductile or brittle

Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~1z2n/mse209/index.html
MSE 2090: Introduction to Mat#érials Science Chapter 8, Failure



http://people.virginia.edu/~lz2n/mse209/index.html

* Ductile fracture - most metals (not too cold):
» Extensive plastic deformation ahead of crack Britte
» Crack is “stable”: resists further extension unless

applied stress is increased I

Brittle/Ductile

e Brittle fracture - ceramics, ice, cold metals:

Force

» Relatively little plastic deformation

Ductile/Brittle
» Crack 1s “unstable”: propagates rapidly without ‘
increase in applied stress
Ductile
Ductile fracture is preferred in most applications —A

Time

v

After crack
commencement

Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~1z2n/mse209/index.html
MSE 2090: Introduction to Materials Science Chapter 8, Failure



http://people.virginia.edu/~lz2n/mse209/index.html

Brittle vs. Ductile Fracture

* Ductile materials - extensive plastic deformation and
energy absorption (“toughness”) before fracture

» Brittle materials - little plastic deformation and low
energy absorption before fracture

Brittle
| Ductile

Stress

Strain

Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~1z2n/mse209/index.html
MSE 2090: Introduction to Mat@rials Science Chapter 8, Failure



http://people.virginia.edu/~lz2n/mse209/index.html

Brittle vs. Ductile Fracture

B. Moderately ductile fracture, typical for ductile metals

C. Brittle fracture, cold metals, ceramics.

[

| i A. Very ductile, soft metals (e.g. Pb, Au) at room
temperature, other metals, polymers, glasses at high
temperature.

A B C

Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~1z2n/mse209/index.html
MSE 2090: Introduction to Mat#€rials Science Chapter 8, Failure



http://people.virginia.edu/~lz2n/mse209/index.html

Fracture Types

Shearing

- Applied stress =>

- Dislocation generation and motion =>

- Dislocations coalesce at grain boundaries =>
- Forming voids =>

- Voids grow to form macroscopic cracks

- Macroscropic crack growth lead to fracture

Dough-like or
conical features



Ductile Fracture (Dislocation Mediated)

Crack
grows
Oc’a o Ve 90° to
applied
‘ I stress
(@) (b) (c)

r r Cup-and-cone

450 - fracture
maximum

shear Fibrous ' -~ Shear (a) Necking
stress

(b) Formation of microvoids

(¢) Coalescence of microvoids to form a crack
(d) (e) (d) Crack propagation by shear deformation

(e) Fracture

Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~1z2n/mse209/index.html
MSE 2090: Introduction to Mat@rials Science Chapter 8, Failure



http://people.virginia.edu/~lz2n/mse209/index.html

Ductile Fracture

Scanning Electron Microscopy: chtographic studies at
(Cup-and-cone fracture in Al) high resolution. Spherical “dimples” correspond to
microvoids that initiate crack formation.

Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~1z2n/mse209/index.htm|
MSE 2090: Introduction to Mat®rials Science Chapter 8, Failure



http://people.virginia.edu/~lz2n/mse209/index.html

Brittle Fracture (Limited Dislocation Mobility)

» No appreciable plastic deformation
» Crack propagation is very fast

» Crack propagates nearly perpendicular to the
direction of the applied stress

» Crack often propagates by cleavage - breaking
of  atomic bonds along specific
crystallographic planes (cleavage planes).

Brittle fracture in a mild steel

Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~1z2n/mse209/index.html
MSE 2090: Introduction to Mat®rials Science Chapter 8, Failure



http://people.virginia.edu/~lz2n/mse209/index.html

Brittle Fracture

A. Transgranular fracture: Fracture cracks pass through
grains. Fracture surface have faceted texture because
of different orientation of cleavage planes in grains.

B. Intergranular fracture: Fracture crack propagation is
along grain boundaries (grain boundaries are
weakened or embrittled by impurities segregation etc.)

Lecture sourée:
Prof. Leonid Zhigilei, http://people.virginia.edu/~1z2n/mse209/index.htm|

MSE 2090: Introduction to Mat#®rials Science Chapter 8, Failure



http://people.virginia.edu/~lz2n/mse209/index.html

Fracture Types

Cleavage
mostly brittle

intra-granulair inter-granulair

(or transgranular) between grain boundaries
split atom bonds

- Cracks grow a very short distance every time

Clam shell structures mark the location of crack tip
after each individual cyclic loading

ultimate fracture

Crack growth rate, da/dN, (m/cycle), log scale

I I ! I ! !
T T T 1 T T T
2 4 8 16 32 64 128

w
D

Stress intesity factor range, AK, (MPaym), log scale



Fracture Types

Delamination (De-adhesion)

Crazing

- Common for polymers
- sub-micormeter voids initiate

stress whitening because of
light reflection from crazes

Unsealed

35

Sealed

Sealed

and
Peeled

Surface Film
Sealant

Unsealed




3.3 Ductile to brittle transition

36



Ductile-to-brittle transition

Low temperatures can severely embrittle steels. The
Liberty ships, produced in great numbers during the WWII
were the first all-welded ships. A significant number of
ships failed by catastrophic fracture. Fatigue cracks
nucleated at the corners of square hatches and propagated
rapidly by brittle fracture.

Lecture source:
Prof. Leonid Zhigilei, http://people.virginia.edu/~1z2n/mse209/index.html
MSE 2090: Introduction to Mat€rials Science Chapter 8, Failure



http://people.virginia.edu/~lz2n/mse209/index.html

Charpy v-notch test

Fracture

Energy =N Py 12)

Influence of temperature on Cv

Brittle Fracture Ductile Fracture

Steel at 300 K

quippy documentation (www.jrkermode.co.uk)

low strength (%

bcc metals
Be, Zn, ceramics

high strength metals
Al, Ti alloys

|

T NDT FATT FTP T
38 Tf



http://www.jrkermode.co.uk

1. Temperature Effects

Temperature decrease => Ductile material can become brittle

BCC metals: Limited dislocation slip systems at low T =>

Impact energy drops suddenly over a relatively narrow temperature range around DBTT.
e Ductile to brittle transition temperature (DBTT) or
* Nil ductility transition temperature (T,)

FCC and HCP metals remain ductile down to very low temperatures

Ceramics, the transition occurs at much higher temperatures than for metals

FCC and HCP metals (e.g. Cu, Ni, stainless steel)

BCC metals (e.g., iron at T < 914°C)
polymers

Brittle <€—j—> More Ductile

stress

High strength materials (o), > E/150)

Impact Energy

T Temperature

Ductile-to-brittle
transition temperature

strain

- Titanic in the icy water of Atlantic (BCC)
38§teel structures are every likely to fail in winter



Tran_smon -

Mixed mode of brittle and ductile Microvoid coalescence in ductile
failures failure



http://eng.sut.ac.th/metal/images/stories/pdf/14_Brittle_fracture_and_impact_testing_1-6.pdf

2. Impurities and alloying effect on DBTT

* Alloying usually increases DBTT by inhibiting dislocation motion. They are
generally added to increase strength or are (an unwanted) outcome of the
processing

 Forsteel P, S, Si, Mo, O increase DBTT while Ni, Vig decease it.

Temperature, °F

e 50 100 150 200 250 300
Temperature, °F : | rmn o 2'191 I\l.fl o [
-100 0 100 200 300 400 . ’ o M —200
250 | | | T AL 250 |- % % -
: _ prde ().5% Mn
0u%ce | z g |
2{]{] e e T ¥ i P .g — 200 | ] 150 #‘i
L B bl
= "  q® a5 (0% Mn %
o | I— : | - : | = 5 150 |- E
% /0.2‘[};% C — 100 %‘D dg 1100 8
i i H (@]
g | 2 F | g
g 100 [T o ey ECTIN- TN INTI V) S —— S — 1 | - £
. / 041% C 0% E ' /
; 4l 499 —50 i ]
50 o flo it %-ﬁﬁ% G 50 7 ________________________________ 20
25 _—
H : i b / i i
3 : : s 80% C g "
0 // I il I o= | 0
~100 -50 0 50 100 150 200 250 -0 -25 0 25 50 75 100 125 150

Temperature, °C Temperature, °C

Decrease of DBTT by Mg: formation of manganese-
sulfide (MnS) and consumption of some S. It has
some side effects
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3. Radiation embrittlement through DBTT

* Energetic particles (such as neutron or fission fragments) => knocking
atoms out of natural lattice positions changing material property

» T,corresponds to | |
K,c =100 MPaym

« Wallin Master Curve model:
K-T shifts to right by AT,
by irradiation

F 3

ke,
5
3/ -
LD 4
<

100 Mpaym

400

Irradiated

Temperature T, T,

Median fracture toughness (K,.)

Stress (Pa)

Irradiation effect:
A Ultimate tensile stress .
0 e st 1. Strengthening
O FElastic limit 2. More brittle

.
0 Strain (%) 1.5 43



3. Radiation embrittlement through DBTT

Wallin’s Master Curve
Irradiation inceases T,

K.

=), 5 /—- . ‘
VLS Z__ Experimental s

Data

T — T,

K;cmeay = 30 + 70 exp[0.019(T — T;)], MPaym
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4. Hydrogen embrittlement through DBTT

* Hydrogen in alloys drastically reduces ductility in
most important alloys:
* nickel-based alloys and, of course, both
ferritic and austenitic steel
e Steel with an ultimate tensile strength of less
than 1000 Mpa is almost insensitive
* Avery common mechanism in Environmentally
assisted cracking (EAC):
* High strength steel, aluminum, & titanium
alloys in aqueous solutions is usually driven
by hydrogen production at the crack tip (i.e.,
the cathodic reaction)
* Different from previously thought anodic
stress corrosion cracking(SCC)
e Reason (most accepted)
* Reduces the bond strength between metal
atoms => easier fracture.

45



Grains

Polycrystalline material:

Composed of many small crystals or grains

Grain Boundaries
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High angle grain boundaries block slip and harden
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5. Grain size

. oL  Small grain size =>
 In BCC metals, brittle fracture can be initiated by 1. Lower DBTT (more ductile)

dislocation glide within a crystalline grain

. T 2. Increases thoughness
* Yield stress depends on grain size (Hall-Petch law)

k
0y = Oy + X =
| o Vd | DUCTILITY & STRENGH INCREASE
 Dislocation pile-up acts as crack with size =d => SIMULTANEOUSLY!!!!
« Stress to cause brittle fracture IS ONLY STRENGTHING MECHANISM THAT
ke EGc IMPROVES DUCTILITY
\/_  Kf = i

o Britle line

o Left size: smalld (d<d,)
g, < o¢= Ductile fracture
* Right side: large (d > d,)

0, < o= Britle fracture Ductile line

Duct Ie Brittle

¢|cr d >

47



Lowering Grain size

* Small grain size =>
1. Lower DBTT (more ductile)
2. Increases thoughness

=
DUCTILITY & STRENGH INCREASE SIMULTANEOUSLY!!!!
ONLY STRENGTHING MECHANISM THAT IMPROVES DUCTILITY

e Grain boundaries have higher energies (surface energy) =
Grains tend to diffuse and get 4

larger to lower the energy Britle line

* Heat treatments that provide
grain refinement such as air
cooling, recrystallisation
during hot working help to
lower transition temperature.

Ductile line

Ductile i. Brittle

dcr d g

48



DBTT relation to grain size analysis

TA:TST - AT

.Z. O-yz (O'y =ag + —;, aop= Be_BT)

2. Of = é /E:;" N because GCQ h 'i

decrN

A

O~ Britle line

O
k

7

1

Absorbed energy, J

Small grain size

T;

material becomes more brittle g

Ductile line

L
dof(T-AT) | dedT)
d

Example:

Temperature

e At T itisin ductile mode
e AtT — AT itis in brittle

49
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6.Size effect and embrittlement

Experiment tests: scaled versions of real structures

The result, however, depends on the size of the specimen
that was tested

From experiment result to engineering design: knowledge
of size effect required

The size effect is defined by comparing the nominal
strength (nominal stress at failure) on of geometrically
similar structures of different sizes.

Classical theories (elastic analysis with allowable stress):
cannot take size effect into account

LEFM: strong size effect

50



® Size effect is crucial in concrete structures (dam,
bridges), geomechanics (tunnels): laboratory tests

are small

® Size effect is less pronounced in mechanical and
aerospace engineering the structures or structural
components can usually be tested at full size.

ON —

\_

CNP\
bD

b is thickness

geometrically similar structures
of different sizes

A
1
EQQ
:'_
025D

o380 R
77100 mm

Fig. I Sp s with sizes in a scale range of 1:32 and specimen proportions.
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D [mm] 50 100 200 400 800 1600
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Structures and tests

Unusual lab tests (1m)




Size effect (cont.)

tstress

/ s

T~ |
jh‘

medium |

3 e

relative deflection 0.00 0.01 0.02 0.03 0.04
strain [m/m]

1. Large structures are softer than small structures.
2. A large structure is more brittle and has a lower
strength than a small structure.
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Size effect

on = fi = f:(D)°

\ Strength criterion

v

Most structures \

>
log (size)

Ky o Ky
vTa  \/menD

ON —

Larger size
More brittle

For very small structures the curve approaches the horizontal line and, therefore, the failure of
these structures can be predicted by a strength theory. On the other hand, for large structures the
curve approaches the inclined line and, therefore, the failure of these structures can be predicted by

LEFM.
54



Bazant’s size effect law

—~1/2
(on)u = Af; (1 + %) (14.8)

where

(on). = Nominal stress at failure of a structure of specific shape and

loading condition.
W = Characteristic length of the structure.
A, B = Positive constants that depend on the fracture properties of the material

and on the shape of the structure, but not on the size of the structure.
f; = Tensile strength of the material introduced for dimensional purposes.

55



7. Rate effects on ductility

 Same materials that show temperature toughness
sensitivity (BCC metals) show high rate effect
* Polymers are highly sensitive to strain rate (especially for

T > glass transition temperature)
 Strain rate 7 |
1. Strength #
2. Ductility N

Strain rate A similarto T N

56
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Strain rate effects on Impact toughness

Strain rate & =
DBTT @ (more brittle in impact)

A 572 Grade 50 Steel ]

100 —
MNominal Strain Rate (sec l]r
-j —
20 | ® 10
o m 0
'—'ﬂ —
& sl 4 10
=)
40 - 1
®
. . . D . 1
Ki Computed using quasistaticf—
relations (Anderson p.178)
0 | I I I I I I I
=300 =200 -100 ()

Temperature, °F

FIGURE 4.r5 Effect of loading rate on the cleavage fracture toughness of a structural steel. Taken from Barsom,
JM., “Development of the AASHTO Fracture Toughness Requirements for Bridege Steels.” Enginesring
Fracture Mechanics, Vol. 7, 1975, pp. ﬁ{IS—ES];!.



Strain rate effects on crack resistance

| | | | |
800 -
oo R
WSV U
gh
600 —
q : ate
(\E i \ed al \ Oad\“v = 3
= \ntetr?
= 400 : =
;’ Quasistatic
200 —
0 | | | | |
0 ] 2 3 4 5 6

Crack Extension. mm

e Strain rate #

o ] A (upper shelf of toughness; opposite to impact toughness):
* Ductile fracture of metals is primarily strain controlled.
* Jintegral is elevated by high s’ggain rates



Crack speed effect on dynamic crack

Kll)

Strain speed 7

Crack Speed

propagation resistance

KID

)

Increasing Toughness

Crack Speed
(b)

Kip @ (Insensitive at low speeds, quick increase approaching V)
Increasing toughness makes K,; more sensitive and grow faster

K

14
I_Vm
s9 \ ¥



8. Triaxial stress and confinement

« Larger specimen size (in-service components) provides higher
constraint > more brittle.

If large size specimens are
specimen used, the transition
Tk temperature will increase.

sfrucle
Large scale tests

JI|I

L=

oo ]
e
]

o
L]
=
L= ]
=
T
=
=
Lot

1
Seryice faTpsrghre
Temperglure —=

Effect of section thickness on
transition temperature

Source: Tapany Udomphol, Suranaree University of Technology
http://eng.sut.ac.th/metaI/images/stories/pdf/lélﬁBrittle fracture and impact testing 1-6.pdf



http://eng.sut.ac.th/metal/images/stories/pdf/14_Brittle_fracture_and_impact_testing_1-6.pdf

Ductile to brittle transition

Often hardening (increasing strength) reduces ductility
Phenomena affecting ductile/brittle response
1. T (especially for BCC metals and ceramics)
mpurities and alloying
Radiation
Hydrogen embrittlement
Grain size
Size effect
Rate effect
Confinement and triaxial stress state

O NO UThEWN

Decreasing grain size is the only mechanism that
hardens and promotes toughness
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4. Linear Elastic Fracture Mechanics (LEFM)
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4.1Griffith energy approach
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Atomistic view of fracture

A
Repulsion UH UH
a a
p=-_2" o p=2% (p)
or or
e P: Force between atoms (tensile positive cancels - sign)
Potential Distance
Energy > e Position r: Distance from other atom
Bond Energy o o a1l
e zo: Equlibrium position, P = =5 =0
Equili_hrium ________________
Attraction Je——P2cng e Displacement z = r — xy.
\ | ) o
A | $: "~ 4% - e X\ Length scale where atomistic force is too small.
Tension i - L 1 2
| X, e F.: Max force at %ﬁrﬂ = 0.
| N | Atomistic: L
' / Bond Cohesive Force Continuum:
_ Xo | / X Eneray P 0 o
Applied | : c ( 3 — FE
Force FY?‘ i A , +
il A . ve(surface energy)
_| : Pf’" J |
-K L
Compression
Y P = Psin(%) )
. nP __ nP,
’ B SEJ!- } — JC B AE METL
_ T _ : 0
e = = | | o = osin(52)
n = No. atoms In cross section area A |
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Atomistic view of fracture

p Oc

Tension i
9] | Y % =
> Cohesive Force
Applied
E Force | XD A - -
. ir ‘
do Tro EA _E ‘J; |
F=Py=0"0 4| o= 0xT
d € }\ T T Compression
v
Summary
This 1s not realistic! For steel o, = 250MPa, FF = 200GPa
Finally to compute surface energy ~e: _E }L E
A A T — ~~
. mar . -
W, = X / Pdz =n / Pesin(—-) = 2nAF: /= (5) . n
J0 0 E—
1W, [nP.\ A Ens | -
Ye — = 2 = £) = = Tp = s (6) o [ E I5
2 A A /7w 0 (T = \."
e W, work of separation fo area section A | 4 0

: Y.
e Compare s = T’Ef with o = f ?

| Cause: Stress Concentration!

e Factor 5: fracture generates two surfaces. 66



Stress concentration

F (external force)

F’ (inner forces)

\ °
load lines

21111

=
| =

222222222222222

Geometry discontinuities: holes, corners, notches, cracks
etc: stress concentrators/risers
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Stress concentration (cont.)

uniaxial I i[

e s -—

Iunl ii_+ ;1

Hrtf#] REREA

(a) O biaxial
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Elliptic hole

Inglis, 1913, theory of elasticity 2a
O, :n:::r(] | )

stress concentration factor [-]

2a
K—?—l:b
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Griffith’s work (brittle materials)

FM was developed during WWI by English aeronautical
engineer A. A. Griffith to explain the following observations:

® The stress needed to fracture bulk glass is around 100 MPa

® The theoretical stress needed for breaking atomic bonds is
approximately 10,000 MPa

® experiments on glass fibers that Griffith himself conducted:
the fracture stress increases as the fiber diameter decreases
=> Hence the uniaxial tensile strength, which had been
used extensively to predict material failure before Griffith,
could not be a specimen-independent material property.

periments, as well as the size-dependence of strength, was

I Griffith suggested that the low fracture strength observed in
due to the presence of microscopic flaws in the bulk material.
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http://en.wikipedia.org/wiki/Glass

Griffith’s size effect experiment

TABLE 1.1. Strength of glass fibers according to Grffith’s experiments.
Diameter Breaking stress Diameter Breaking stress

(10~ in) (Ibfin?) (1077 in) (Ib/in?)
40.00 24 900 0.95 117 000
4.20 42 300 0.75 134 000
2.78 50 800 0.70 164 000
2.25 64 100 0.60 185 000
2.00 79 600 0.56 154 000
1.85 88 500 0.50 195 000
1.75 82 600 0.38 232 000
1.40 85 200 0.26 332 000
1.32 09 500 0.165 498 000
1.15 88 700 0.130 491 000

“the weakness of isotropic solids... is due to the presence of discontinuities or
flaws... The effective strength of technical materials could be increased 10 or
20 times at least if these flaws could be eliminated."
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Fracture stress: discrepancy
between theory and experiment

/E
Oth = =Y
o

glass

steel

silica fibers

iron whiskers
silicon whiskers
alumina whiskers
ausformed steel
plano wire

ao [m]

3x10°1°

10—10
10—10
1010
10—10
10—]0
1010
10—10

60
210
100
295
165
495
200
200

72

14
45
31
54
41
70
45
45

170
250
25000
13000
6500
15000
3000
2750

E [GPE] Oth [GPB] Ot [MPa] U'th/(‘fb

82
180
1.3
4.2
6.3
4.7

15
16.4



Cause ofr discrepancy:
1. Stress approach

e For a large domain (L,W <« a), crack

O
** * * * * * * ? * * * length 2a, & radius of curvature p < a:

Gm

O

cr.m:cr(l—FQ\/qchr\/E
P f

e LFor effective remote stress at failure o =

P l——

2a

o, om 1s equal to atomistic based o:

O = 20 a e E’?Si
¢ <0 P = da xq

e [f we assume the crack 1s sharp at atom-

istic level p =~ g we get,

X EIT] I

Atomistic:

J— .' e —
C o ‘1(:'; i

Or

da

Contimuum with sharp crack 2a
_ By _
Of — “k'fl fa 7
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Griffith’s verification experiment

® Glass fibers with artificial cracks (much larger
than natural crack-like flaws), tension tests

Crack Length, 2a Measured Strength, o o la
mimn MPa f
MPavm
sample 1 3.8 6.0 0.26
sample 2 6.9 4.3 0.25
sample 3 13.7 3.3 0.27
sample 4 22.6 2.5 0.27

(Data from the Griffith experiment)

[Tf:
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4.1.3. Cause of discrepancy:
2. Energy approach
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Energy balance during
crack growth

kinetic energy

external work _ _ _ _
@~ s 50}

internal strain energy
All changes with respect to time are caused by changes in crack

size: a(-) 3 5(-) da
ot Oa Ot
Energy equation is rewritten:
oW 9U. 08U, OUr

20 - 92 T 9a | Py slow process

It indicates that the work rate supplied to the continuum by the applied loads is equal to the rate
of the elastic strain energy and plastic strain work plus the energy dissipated in crack propagation
76



Potential energy I=U,—-W

Ol1 B oU, | oUTr
da  Oa  Oa
Brittle materials: no plastic deformation

Ol11
— Griffith’s through-thickness crack
Oa

Vs is energy required to forma unit of new surface

O11 |
[J/m2=N/m] A 27s (two new material surfaces)
IninS’ SO|UtiOn T(a) — IT(0) = WGQEGQB
o _ 1m0 mo”a ( 2B,
8A — E E :2"}/5—}'5‘]'-‘,‘:\/ —

(linear plane stress, constant load) 4



Comparison of stress & energy
approaches

Stress approach: Energy approach:
Stress Concentration Griffith

O = 0.5 ES"S o = \/%\/E:S ~ ().8
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Energy equation for
ductile materials

Plane stress

o, = \/QE% Griffith (1921), ideally brittle solids
ma
o, = \/QE(% /) Irwin, Orowan (1948), metals
ma

Yp plastic work per unit area of surface created

Yp 2> Vs

7p = 10°ys  (metals)
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Generalization of Energy
equation

2Ew ¢

ma

o =
e wy: Fracture energy from plastic, viscoelastic, or viscoplastic effects

e w; can also be mnfluenced by crack meandering and branching

e Caution: If nonlinear displacement regions are large enough this E%uatmn 1S
MT
not accurate as it is based on linear elastic solution (11 = Il — T)

T T T T T Crack Propagation Plastic Deformation
>

HV,’ =¥ 23 /Vp

Crack Broken Bonds W i (b)

True Area
ijected Areg
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Energy release rate

dIl
Irwin 1956 (@ oy

\_

J

Crack extension force
Crack driving force

a.k.a

G: Energy released during fracture per unit of newly created

fracture surface area

4 )

G = 20 ¢

L™

dfhe resistance of the material
that must be overcome for
crack growth

energy available for crack growth (crack driving force)

Energy release rate failure criterion [G > ch

fracture energy, considered to be a material property (independent of the

applied loads and the geometry of the body).
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http://en.wikipedia.org/wiki/Failure_theory_(material)

Strain energy density

Consider a linear elastic bar of stiffness k, length L, area A, subjected to a force F,

?

the work is

W=/ quz/ kudu =
0 0 2

1
~ku?

1

= —I'y
2

This work will be completely stored in the structure
in the form of strain energy. Therefore, the external work and strain energy are

equal to one another

In terms of stress/strain

Strain energy density

J/m”)

O-JITA

U=W = 1Fu
2
1 (1F
U= —-Fu= AL
2 kQAIj
1
2
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Strain energy density

1 Poisson’s ratio
U = + o0, +07) —%amay + 0,0,

QE( :
‘|‘0'sz) | 21 (T:Ey T Tg,?z T Tgm)
B E
Plane problems H= 2(1 + v) shear modulus
1 [k+1 ]
U = 1 1 (O‘i + 0‘5) — 2(0z0, — ’r:fy)

3 —4v plane strain
3—V

1+ v

Kolosov coefficient -
plane stress
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Evaluation of G

Given: A point load - displacement system p A

with a crack and two data points:

e Load Py, displacement wu,, & crack P

len
octh aq P,
e Load F», displacement wus, & crack
length as = a; + Aa (small Aa)
Goal: Compute &G
Notation:
0,

e W5 External work from n; to ns

e W, External work that would have
happened through elastic (or almost
elastic) deformation with fixed crack

&

length tfrom 0 to ny.

o Wy Similar to Wy
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Questions:

Evaluation of G

e What is the value of Wy = W7

e For two paths from o to 2 (02 and

012) can we write:

I{FG 5 = H::Jl 4 HT 12

Explain.

=

W 12 — I‘i"r,:,g — I‘i"f,:, 1 ?

e How G 1s calculated from the figure?

P

86
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Evaluation of G

e What 1s the value of Wy = W7
_ _ 1 )
II 1 — II ol — ?_P] ] = L‘l[.l

Linear system for fixed crack length
a trom o to nq.

P A ni:a
e For two paths from o to 2 (02 and no @ a-+ Aa

012) can we write:

I‘i'fgg = H-’::. 1T H;'?l 9 = 1_1_;1 0 = I‘i'fgg — I‘i'fg 1 7

No. Because this 1s a dissipative P2 4
| . o | T > .
mechanism between n,; and n. due 0,
. /
to crack growth and work i1s path de- a
pendent. N LT
’ ’ %
/ ..
N
7 -
r &4
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Evaluation of G

o4 d(Ue—W) ni:a
G —  dA — dBa PA no : a+ Aa

= Wyo
1
= E(quz — Pyuy)
AW = W2
23
= / Pdu
Ui
P+ P,
) : 1 P P: (P — P)( )
g Y9 | — o) (ug —uyq
G:BAQ(PI“’Q_ > 2 >
_ Grey area
~ BAa
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G from experiments

£
e

-
k2
-u

| ¢

AN

u
4 )

1 shaded area

(g4 — a3
\§ J
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G from experiment

a1: OA, triangle OAC=U

a2: OB, triangle OBC=U

B: thickness
II=U,—W

Fixed grips

1
A[.JTE — —5(1‘_}1 — PQ)H
AW =0 =
1 1
G = _(P, — Py)u
Baga 1
1 (OAB
. _ 1(04B)
B Aa

Crack can grow from A to B or we obtain OA, OB
with two different tests with different a values.

90
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G from experiment

a1: OA, triangle OAC=U

a2: OB, triangle OBC=U
Dead loads
[ tP,u
3
Ea-d /‘11
, / o
// ’;:-o, Aa
P Al ’B’
| :
| |
| I
! }
| |
| !
| E :
| |
| |
]
0 — 0 i

B: thickness
I=U,—-W

(

\_
|
AU, = §P(u2 — )
AW = P(ug —uy) =
1 1
(7 — S Plue — u
BAqa! 42 =)

OAB=ABCD-(OBD-0AC)
1 (OAB)
B Aa

O —

Crack can grow from A to B or we obtain OA, OB

91
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G in terms of compliance

U
=

Fixed grips

dU, = U.(a +da) — Ug(a)

1 1

1
= —dPu
2
1 dP
G =—55"%4a
. 1 wu? dC_ 1 PQdC

:2BC2da_E da

°1

P
dP

J inverse of stiffness




G in terms of compliance

C
[O — % J inverse of stiffness X
Fixed load Ko
1 1 A
dU, = —=P(u + du) — = Pu
2 2
1 P
= — Pdu
2
dW = Pdu
1 du
=58
1 ,dC
G=58"" 0




G in terms of compliance

Fixed grips Fixed loads
1 ’Uﬂz dC 1 QdC zdc

— e I — _P
G 2B C? da QBP da G = 2B da

Strain energy release rate is identical for fixed grips
and fixed loads.

Strain energy release rate is proportional to the
differentiation of the compliance with respect to the
crack length.
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Crack extension resistance curve (R-curve)

Irwin

( )

& J

Resistance to fracture increases with growing

crack size in elastic-plastic materials.

R= R(a) Irwin

Stable crack growth: fracture
resistance of thin specimens is

represented by a curve not a
single parameter.

R,G

crack driving
force curve

R-curve




R-curve shapes

flat R-curve

G =

2

To‘a rising R-curve

(ideally brittle materials)

stable crack growth

Crack Size
slope
e <
- <,> Y

96

E (ductile metals)

instabilit

Crack Size

crack grows then stops,
only grows further if there
is an increase of applied
load



Double cantilever beam (DCB)

example
i .
é B Pa’
D 3E] .
c-A_2a E(}‘
P 3E]T /
y
o P? dC B P2q?
2B da BEI
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Double cantilever beam (DCB)
example: load control

dG@  dR
. P“a da da Py
T — —
BEI Instability in
g‘ R l,oatd (70:1)tro|
ag ) B 2P%a - 2Q
da ), BEI a 3
|

A

Crack Size
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Double cantilever beam (DCB)
example: displacement control

P=a” A
Y p_= =

G = P =
BE] C

G.R
RS
"~ 4Ela*

G

(Z’(j) __9A'EI . 4¢

5
Ba a

Crack Size
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Example

The following data were obtained from a series of tests conducted on precracked
specimens of thickness 1 mm.

Crack length  Critical load Critical displacement

a(mm) P(kN) w(mm)
30.0 4.00 040
40.0 3.50 0.50
50.5 3.12 0.63
61.6 2.80 0.78
71.7 2.62 0.94
79.0 2.56 1.09

where P and u are the critical load and displacement at crack growth. The load-

displacement record for all crack lengths is linearly elastic up to the critical point.
Determine the critical value of the strain energy release rate G. = R from: (a) the

load-displacement records, and (b) the compliance-crack length curve.
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E{}Aiﬂj] = I:ﬂﬂ,;ﬂ:-r} + [At'ﬂf-ri':iﬂj} - [Gﬂjﬂg]

4

// or
__________ " A u,.P) 1 ! 1
R S (OA;A;) = EFlﬂi+§{H'l'Pj}[Hj‘ui}—EPj“j
IOJ
i e
a I Ai(ujopj) 4 N
O — 1 OAiAj P — Pju;
| 2B a; — Qg 2B(ﬂj - a;)
| \_ y,
|
; A | A]
Area OA1A2 0O A, Az OA3A4 O'.A4A5 OASAﬁ

G. = R&J/m*y  30.0 30.7 30.2 29.1 30.8

Gc for different crack lengths are almost the same: flat R-
curve. o



For the determination of G. = R from the compliance-crack length curve we first
determine the following values of compliance C' = u/ P for the various crack lengths

a(mm) 30.0 400 505 616 71.7 790
C(x107"m/N) 100 143 202 279 359 4.26

P =4 kN
dC  (143-1.00) x 107" m/N 6 wvel]
- = 010 m 43 x107° N
and

~ (4x10°)*N*x (43 x 107°N~1)
2x 103 m

G.=R = 34.4kJ/m” .
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a(mm) 30.0 40,0 505 616 717 79.0

G.= RJ/m?) 344 304 312 292 297 300

20 41‘3 E:EI' EIID
a(mm)
For the crack lengths a, a3, as and as, dC/da can be determined as the mean

value of the left and right derivatives of C. For example, for the crack length
a = 50.5 mm, we have

da 11.1 x 103 m

P =3.12kN
dC (202 -143)x 107" m/N 6 nre]
(E), = 05 <107 m =56 x 107°N
. -7
(dc) _277-202) x 107" m/N _ o 06 -
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4.2. Stress solutions, Stress Intensity Factor K
(SIF)
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Elastodynamics Boundary value problem

Kinematics

displacement u
velocity v

acceleration a 1 1=
. €ij = 5(?1@4 + -u.jj.;;_) = €19 = 5(’“-1..‘2- + "31-211)
strain ¢ fy = o
Kinetics
[ d11
stress =0 =| oz
i 031

traction T =on
linear momentum p

body force b




Elastostatics Boundary value problem

Constitutive equation

HOOk’S IaW 0ij = Dijkicki i, .k l=1.2.3
|sotropic
3D ng = Aﬁ@.‘jEkk -+ Q;I-E.g'j or T = \Ng+ Q;L.E
Ty \ i (1 -V ) v 0 | -
. a E 1 1 — 0 —rT
2D (plane strain) | " (= a0 | - SR {fw }
| Tzy ] 0 0 1_221" | 'y
( Txx 1 1/ 0 | Epr
2D (plane stress) | 7w ¢ = 72" 'V “yy
\ Tzy J 0 0 2 Ty

}_,]' — {)V - A o
Balance of linear momentum
V.o + ,Ob — p or 034 - ,Obj — puE

V.o +pb =p dDy
T
Vs t specified

e Static: p=10

D
e No hody force b =0 gp7 W specified

107
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Displacement approach

E v
Y 1 + v L ) T R J oDy

T
t specified

9D u specified
“u o = u strongly L1

Eij = % (wij + wji) >

A+ ) VV.u+puVVu =) or (A+p)ujj;+puij; = ()

BC's

PDE + BCforu = € = o
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Stress function approach

What are Airy stress function approach?

Use of stress function
Balance of linear momentum is automatically satisfied (no body force, static)

(r1,19) — 04 =~V + 0V — 0455 =0

How do we obtain strains and displacements?

. _ 1+ v .
Strain: compliance e.g. Eij = 7 (0ij — V0ijOkE)
. . 1
Displacements: Integration of €ij = 5(-11-@133- + uj ;)

Can we always obtain u by integration? No

3 displacements (unknowns)
6 strains (equations)

Need to satisfy strain 325:@1; 3253;_-; 3253#:: aggij

. — = — ),
compatibility condition(s) Ox ;0 T Ox;0x)  Ox;0x;  Ox;0xy,

109



Stress function approach

1+ | -
fij =~ 1% + (1 =)0,k }

261912 — €11,22 —€22.11 = 0

2¢ 1122 + Y2022 + Y1111 =0 —

(Y11 +v22)11+ (Y11 +1v22)220 =0

, 8 S
Laplace operator : V%= _— + — = ()11 +( )2
Ory  0xj )
bi-harmonic equation V2(V2) = Vi =0
BC's
Stress function E’lppl'()ﬂ('lli [)j:-;p]ﬂ(-{ﬁlll{'ﬁll‘[ E]I)l)l‘{:)ﬂ(-ll:
N =0 =¢ =u PDE + BCforu = ¢ = o

Generally no need to solve biharmonic function:
Extensive set of functions from complex analysis
No need to solve any PDE

Only working with the scalar stress function
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Complex numbers

e Complex numbers

z =z +1x9 = Re(z) +2Im(z)

Re(z) = x
Im(z) = a9
2 = ret?
Z=x —ivy =re Y

e Complex functions

conjugate

f(z) = Ref(z) +2Imf(z) = Uz, 22) + iV (21, 22)

U&V : conjugate harmonic functions: VU = V2V =0

|||||||||||||||||||||||||||

111

e Derivative relations

0f(z) 0f(z) 0z

Or, Oz 0Oz = f'(2)
ﬁf{;ﬁ) . ﬁf(z) az . Lff(z)
Ore Oz Oz
ORef(z) ,
5o = Ref'(2)
Olmf(z) ,
S = Imf(2)
ORef(z) B ,
9y —Imf'(z)
Olmf(z) ,
o) = Ref'(2)
1 P(x,y)
b\ - x




Stress function approach

e Any biharmonic solution can be expressed by
Kolonov-Muskhelishvili complex potentials, @, y:

¥(zr1,z2) = Re[2¢ + X]

e Stresses are obtalned differentiation.

T

L]
=
|

011 = P22 = Re

| -I;_"":_,.
I

Ty

)
_|_

b | = 2| =
2|
=

o292 = ¥ 11 = Re

1
T19 = —'P:lg = §RE [fr,f)”

+
e

e Displacements are obtained by Integration of strains:

u; = Re [k¢ — 2¢/ — )]

uz =Im (k¢ +2¢' + X']
~_J 3—4v plane strain
= “fjr:j plane stress

112



Crack modes

v

Mode I: Mode II: Mode III:
Opening In-plane shear  Out-of-plane shear
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Crack modes

Mode I: Mode II:
Opening In-plane shear

114 T




Westergaard’'s complex stress
1937 function for mode |

e Constructing appropriate stress function (ignoring const. parts):

0=o0p2(z1,22=0) =

Yff:_fqi}ff:_zqi}ff (i’g:[]} ;H 5

X' =—20'+0 =

X =—20+206 {6} =¢) =

!P':RC[,E@—I—‘(]:RE{E@—EQH—?@]

= 2Re [—-i.rgr_j}a + cﬂ = 2 [Iglmcﬁ + Reﬂ
7= [ f(2)dz, Zz= [ Z(2)d2
Z and Z are Ist, 2nd antiderivatives

17
* Using @ = jz

Y = Re E +15IlmZ

116



Westergaard’'s complex stress
function for mode |

Z(2),z =z +1iy,i* = —1

Y — Re E +ylmZ
7 = | f(2)dz, Z= | 7 (2)d>

Kolosov coef. k

3 —4v plane strain
K=43—v

1+ v
FE

" 2(1+v)

plane stress

7

shear modulus

117

=N

\_

i 0z = ReZ — yIlmZ’ A
oyy = ReZ + yImZ’
Tey = —yReZ'’

€ij — Uj I

-

\_

20U =

200 =

\
kK — 1 ~

ReZ — ylmZ
K+ 1

ImZ — yReZ




Griffith’s crack (mode 1)

(Z,Y) = 00 :0xgp = Oyy = O, Tgy =0

z| <a,y=0:0y, =Tz =0 D

boundary conditions

g Oz

V22 — g2

Z(z) =

-

J

-

0z = ReZ — yIlmZ’
0yy = ReZ + yImZ’

~N

_ /
i f \Tmy _ yReZ
A y =0, |z| < a
infinite plate 7 ox .. :
&) = IS IMAdginar
; (D a),

A= Ay

(x,y) > 00:2—>00 Z g us




Griffith’s crack (mode I)

infinite plate 119



Griffith’s crack (mode I)

o(€+a) o(€§+a)

Z(z) = VEE + 2a) B V2a€(1+ &/ (2a)))

V1+€/(2a) = (1+&/(2a)) 7

1§
— 1 CH.OT
2 % }/c

— 1 5 Sma;].]. >

¢ small E+a=a

. 7 =

V 2TE
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Recall

z 4 )
«.,/27r \ 0zz = ReZ — yImZ’
16‘/2 0 oyy = ReZ + yImZ’
Tey = —yReZ'
1 K} K i
ZI ») — 3}2 — e 139f2
&) =5 ot or/2mr

Crack tip stress field

K, (9) } (9), (39)‘
O =— 0S| — || | —sin| — |sin| —
2@ 2 )| > )

- Inverse square root

—

—

K, [9) . (9) (39]
O, = o8| — |l I + sin| — [sin| —
" x@ )| 2 )7
coa( )am(el
PRt

—

singularity
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Plane strain problems

Hooke’s law

K 7, .0 360
1 ( = cosg 1—31115(:08?
€ — /o — VO
- b - " s COS Gi (1 -+ sin Q COS %>
. V2mr 2 2
Plane strain €., =0 0 0 . 30
sSin — COS 5 Sin —
>0, = V(0g + 0y) .
r ' N
) K; v,
0., = LV —— COS —
* 27T 2
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Stresses on the crack plane

Ki COS ¢ (1 S ¢ CcOS 39)
— — — sin — —
vV omr 2 2 2

Ky 6 6 30
cos— {14 sin —cos —
2 2 2

B \/ 27T

Kr . 0 g @ 36
S111 — COS — S111 —
2 2 2

On the crack plane
f=0,r==x

crack plane is a principal plane
with the following principal

=0
yy =
V2 *tresses
by 01 =02 = Oga = Oyy




Stress Intensity Factor (SIF)

—

K, (9)’ . (9) . (39)
,. cos| — || | —sin| — |sin| —
N 27 2 ) 2 2 )
o, =——=——=cos| — |l | +sin| — [sinf —
» 27 2 i 2 2

K, (9) . (9]
T =— cos| — |sin| —
Yoo\ 2mr 2 2

=

—

® Stresses-K: linearly proportional SIMILITUDE
I
® K uniquely defines the crack tip stress field
-
® modes|, Il and Il A

LI B

LEFM: single-parameter Kj, KII, K}'j’[ N
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Mode Il problem

Boundary conditions

Stress function

~ T
r
a2
|
é—*&
+—2a —»
N
‘L
T <

[ 0zs = ReZ — yImZ’ A
oyy = ReZ + yImZ’
Toy = —yReZ’

.

T
A

(Z,Yy) > 00:0gg =0yy =0,Tgy =T

z| <a,y=0:0yy =Tgy =0

Check BCs
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Mode Il problem

(Z,Yy) > 00:0gg =0yy =0,Tgy =T

Boundary conditions

Stress function

- Kir S1 b 2 + coS b COS 36

n — — —

V) o2 2 %
| K 7, v, 7,
N — = ! SIN1 — COS — COS 3—

! 27T 2 2 2
Krr 6 0 39)

COS — l—SiIl—SlllE

mode |l SIF



Mode ||

Stress function

problem (cont.)

(Z,Yy) > 00:0gg =0yy =0,Tgy =T

z| <a,y=0:0yy =Tgy =0

- ) N
1T Z
/ =

V22 — g2
J

-

-

~N

K / v, v,
sz \ UZZE ;TSiHQ(H—l—].—I—QCOSQ2)

J \

K / v, v,
fU:QLI ;TCOSQ(H—I—QSiHQQ)

J

mode |l SIF

[KII = ’T\/EJ
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Universal nature of the
asymptotic stress field

Westergaards, Sneddon etc.

I Ki;r . 0 0 36
O = f}rﬁ CO*‘{%}_‘ Sin(g)gi“(?ﬂ Opy = — oy sin 9 (2 + cos 5 coSs E)

i Kir .6 68 36
g, = N L,os{zjhl + 5111(2)51n(2]:| Oyy \/% SII 5 COS 5 COS 5
Ky 6 ( .6 . 39)
S P Toy = cos — | 1 — sin — sin —
o= {3 (3 v Vo %2 515
(mode I} (mode II)
: K
lrwin Oi5 — fij(g) + H.O.T

\ 21T
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Mode |: displacement field

K ( 0 .. 9)
COS — — 4 8in —
2 2

27T

Z(z) =

o

A1 Z=/Z(z)dz

V 2TE

L — O 74| — ~ ~ —
mg 1/ 5 (COS : —I—zsm2 =&+ a

Displacement field

Recall

4 _1 R )
2UU = RQ Re / - yImZ

1 i~
2V = R_QI_ Im/ — yReZ

£ = ret?
—iT

€ — COSIT — 2SINZI

-

K 7, 7,
u=2:\/;r6082(n—1 QSin22) Kolosov coef.

Ky | v,
\U:?; ;rsing(ﬁ+1—2;082

3 —v
1+ v

3 —4v plane strain
R, —
plane stress

0
2 J




Crack face displacement

y=0,—a<zr<a

k+1_ 2 K+1- 7
Uy = Im/ — yReZ . v = ImZ
pv ;ImZ —y 1
ox -
Z(Z):\/m2—a2 *Z(:-:]za\/mg—a?
—a<z<a i=+-1 ~ 7(2) =i(0V/a? — z2)
U=ﬁ2—1J\/a2—$2 Ay
\ H / ellipse
Crack Opening Displacement —
p 1 __*Qu“ coo __~ > %
COD =2v = o\ a2 — x2
Q)UJ 130



Crack tip stress field in polar
coordinates-mode |

—_— O-xy
3 o
et\/ar ]_..
52 Te \/ \/
r \
K}' 5 9 ]. 39 € Ort N\
Opp = — COS COS — A o
Amr \ 4 2 4 2 Orr "
K (3 0 | 1 39) stress transformation
Tpg = — COS — + — cos —
V2rmr \4 2 4 [ ] [ - [ %] [ _s]
KI ( 1 ' 9 | 1 ' 36) Otr Ott —S C Oxy Oyy S C
Tro — — S1I1 | S1I1 — [ 20y + 2050y + 520y,
r 2’}1‘1’“‘ 4 2 4: 2 — €SOy + (c2 — sz)axy + csoy,
- / T | s 4 (<2 — Y0y + C5Oyy

%0y — 2C80yy + €20y,




Principal crack tip stresses

—|— g Opyr — 0
yy uy |
2 ( 2 ) T2

K v .0 30
= cos — | 1 —sin — cos —
2 2 2

K1 COS Q (1 + sin e COS %>
V2mr 2 2 2
Ky . 6 0 . 30

S111 — COS — S1I1 E

plane strain | -« o3 = v(o1 + 02)
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Crack solution using V-Notch

* Airy stress function assumed to be s N

p

O(r,0) = r "0, \)

Compatibility condition

AT 92F (0, \)

T +2(\2 +1) = + (A2 -1)2F@H. N =0 ==

/
)
\
/
2 109 1) (28 108 10°% 27| — (
o (prg) o (P10 1PN (2P 100 10°0) 4
v (ve) = (.a-}r? Tror aaﬂ) (.f:-}-;-ﬂ Tror aerz) =0 = >’<_ >
. \
/
\
J

L T e e TN
F(A) =" =

2 2 2 27 Source: Saouma:2010 Boulder
[{:1 - }‘) Tm ] [(1 +A) +m } =0 = Fracture Mechanics
m==xi(lxA) = Williams, 1952

Final form of stress function

®(r,0) = r* 1 [Acos(A — 1)8 + Bcos(A + 1)8 + C'sin(\ — 1)0 4+ D sin(\ + 1)6]
F(6.)
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Crack solution using V-Notch

Stress values

2P

T le — -
Or2
‘)
Trg — —
r a.r.,

= PMINAN+1)F(0)

(Lo
r 00

Boundary conditions

) = P TH=AF(0)]

(

/

\

~ /

27 | 1 >
)

\

Y,

'-r'__h‘h\“\-\. fMI_H_f -\""‘-\-._p-’f__“\]
P

096 lop=ta = 0 _
Tre |H::|:.:r = 0
Fla)=F(-a)=F(a)=F(—a)=0 =
[ cos(A — 1a  cos(A+ 1) 0 1(A)
wsin(A — 1)a  sin(A + 1)a 0 < B L _ |
0 0 sin(A —1)a  sin(A+1)a [

] 0 0 weos(A —1)a cos(A+1)a | | D |
w = 2=1
W= 3FT1-

Eigenvalues and eigenvectors for nontrivial solutions

sin 26, v — &, sin 2av

sin 2\, a0 + A, sin 2av

0
0

<€

Mode |

<€

Mode I

135
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Crack solution using V-Notch

* Sharp crack P

-
sin(27A,) = 0 F (
=7 — = /
sin(27&,) = 0 >
A, = § with n = 1.3.4,---(n=2 constant stress) Ig \

| |

2 ;

* After having eigenvalues, eigenvectors are obtained from T>/< / <
Mode | A, cos(A, — 1)a+ B, cos(A, +1)aa = 0 o <
Apwsin(A, —1)a + Bysin(A, +1)a = 0 <
J

L T T T TN
Modell sin(&, —1)a+ Dy, sin(§, +1)a = 0

Chwcos(&, — Da+ D, cos(&, +1a = 0

* First term of stress expansion

o A9, (5«:0 f 1(:0 )+ hﬂ( : 119 ; in 39)-

Uprr — ¢ — COS = — —CO5 — — — + — Sl —
V2mr \4 2 4 Vor\ 47 2 T g 2
B (Bt W) (3 93-%’)

Opyp = \/H (4(:0.52 + 4(:(% + S\ 1 1112 Jram 5

- Ky (1 1119 L 1 . )+ Kp (1 o 3 (;0 ‘39)]
T = — sin — + — sin — -.— 2 cos —=
’ V2Tr 4 2 4 V2T \ 4 9




Inclined crack in tension

0]

S O T O T

2\/1 < iﬁ \O\

o1 = 0, cos> 0 + 2sin 6 cos 075y + sin? 0o,

o2 = Oy cos? f — 2sin 6 cos 07y + sin® 0o,
v i l l i l v T12 = —04 cos 0sin 6 + cos 20714, 4+ 0.5 sin 200,

Final result

Recall
K}f =O'y\/ﬁ

K; = o+v/macos® 3

K = o+/masin B cos B8

K = Tpyv/ma
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Cylindrical pressure vessel with an inclined
through-thickness crack

> 10 thin-walled pressure
~ (rR*)p = (2nRt)o,

closed-ends n

128 =



Cylindrical pressure vessel with an inclined
through-thickness crack

This is why an overcooked hotdog usually
cracks along the longitudinal direction first
Ua(i.e. its skin fails from hoop stress, generated
by internal steam pressure).




Computation of SIFs

® Analytical methods (limitation: simple geometry)

- superposition methods
- weight/Green functions

® Numerical methods (FEM, BEM, XFEM)

numerical solutions -> data fit -> SIF handbooks

® Experimental methods
- photoelasticity
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SIF for finite size samples

Exact (closed-form) solution for SIFs: simple crack
geometries in an infinite plate.

Cracks in finite plate: influence of external boundaries
cannot be neglected -> generally, no exact solution

141



SIF for finite size samples
K{ < K{

orqd ljngs are compressed->>
i . : ighen 4tress concentration
dimensional

T—; | Iy ‘ analysis

() Infinite plate 1 (b) Finite plate

@g ma o<<W: fla/W)=1

geometry/correctior{K B
factor [-] L I =




SIFs handbook

T T

Stress Intensity Factor

K, =om

2. Centre crack in a strip of finite width

K, =Jsec%nﬁ

secant function

-+ W N 1
T T T sect) =
o cos 6
et S I V7 T T— -




SIFs handbook

o

e e s e

5. Edge crack in a beam of width B subjected to a 6M
bending K, = W o+vna where o= -
J N BE ) W faw)
0.1 1.044
M " 0.2 1.055
0.3 1.125
aJ 0.4 1.257
A AAA A s um
0.6 1.915
- >
h
—B h/b> 1anda/b < 0.6
= | ‘
h
2 3 4
K, = oy/ma |1.12 — 0.23 (5) +10.6 (5) 217 (5) +304 (5)
2 b b b b

oy



SIFs handbook

——— nerrrrTTTII

9. Single-edge notch bend (SENB), thickness B B=W /2

p
} K =Y 4Pz
| BJW
! A _I_a a 12 a 2 a 5/2
Y= 1.63(—) - 2.6[*—) + 12.3(—-)
4w .
1}*’2 P!Z W W W

_ 21.3(%) o, 21.9(%) "
Ki=o0va | 112/ + 0_76\/6\1/ _

8.48 (%)2 +27.36 (Viv)?’

RRRRRRRRE ~ 1.120v/1ta
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Superposition method

A sample in mode | subjected to tension and bending:

Ktensmn

Kbending

O35 — iJ | : ©]
T Fi(O) + Lo fis(6)

K}ensmn + Kbendmg

ET;,;j -

—

27rfrI fis(0) -6 |

M

-

\_

tension bending
K; = Ktension 4 gt

~N

J

9_?

Is superposition of SIFs of different crack modes possible?
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Determine the stress intensity factor for an edge cracked
plate subjected to a combined tension and bending.

a/W = 0.2

| . G R BE
B thickness J

M
Solution
oM on
1.055 1.12
oM P
K}' — (1055BW2 | 112W) v TTA
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Superposition method (cont.)

Centered crack under internal pressure

#TTnl#uTTﬁnurT.

T
)
£

#"U$*lﬂi*¢ﬁll'
Kig+ Kre =Kipp=0—= Kje = —Kjqg = —0v7a

P

K=K% 4 KP

This result is useful for surface flaws along the
internal wall of pressure vessels.
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(b)

(a)

mTa

Kr=o0
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SIFs: asymmetric loadings

b

LT

A

lll.ﬂ'

Circle must be in the middle of domain (both vertically

Procedure: build up the case from symmetric
cases and then to subtract the superfluous

and horizontally)

of TT1

loadings.
T
o {b
B C
ot 4 + + }

Q

151

Kys=Kp+ K¢ — Kp

Kjqg= (KB—l—Kc)/Q

Note: The circle should be in
the middle of the plate



Two small cracks at a hole

2.5
2.0 JPEIEAN

. e K= 3.3ﬁa:r..,f::{ﬂ- R)
1.5 .7 Bowie solution

F ,"I /

1.0~ = - - -
!
/ /~
K =oJm
0.5 ()

1.0 1.2 1.4 1.6 1.8 2.0

a/R

edge crack hole as a part of the crack

K, =112(30)\/7(a—-R) = 3360+ ma, }1 O 3.36J1 - chrJE
a d
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Photoelasticit
Wikipedia
Photoelasticity is an experimental method to determine the stress distribution in a material.
The method is mostly used in cases where mathematical methods become quite cumbersome.
Unlike the analytical methods of stress determination, photoelasticity gives a fairly accurate
picture of stress distribution, even around abrupt discontinuities in a material. The method is an

Important tool for determining critical stress points in a material, and is used for determining
stress concentration in irregular geometries.
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http://en.wikipedia.org/wiki/Stress_analysis

K-G relationship

So far, two parameters that describe the
behavior of cracks: K and G.

K: local behavior (tip stresses)
G: global behavior (energy) : ,,!

Irwin: for linear elastic materials, these two params are
uniquely related Stresse

Stresses

Crack closure analysis: work
to open the crack = work to close

the crack b)
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Irwin

B=1 (unit thickness) "

Closure
Stresses

3—v
1+ v

3 —4v plane strain
kK =
plane stress

G = lim (5 +1) K2

Aa—0 4’?1';114&{1

K-G relationship

G = lim (A—U>
Aa—0 \ Al /5 cd 10ad

work of crack closure

1

AU = /&ﬂ dU(z)
dU(a:) = QEJyy(m)uy(m)dm

(/ o0
; 5111— (H+1—QCDSE§), =T =

’y’y_

~ (k+1)Ki(a+ Aa)

24
KI (a)

\/Aa—q:
27

~

J

/&“’\/Aa—ﬂc (G’:

(k+1)K2

I

J




K-G relationship (cont.)

Mode | r \
2
K7
— plane stress
G ={ E
K7 |
(1 —v?) 55 plane strain
. . y
Mixed mode ) .
2 2 2 ,.
o 81 Bir | B 5 o plone stai
— i | F—{ 1-1?
\ EI E! 2'“’ y \ E for plane stress

® Equivalence of the strain energy release rate and SIF approach
® Mixed mode: G is scalar => mode contributions are additive

® Assumption: self-similar crack growth!!!

Self-similar crack growth: planar crack remains planar (da same
direction asg )
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SIF in terms of compliance

B: thickness

-

E'P2dC
K} =
I 2B da

. J

A series of specimens with different crack lengths: measure the

compliance C for each specimen -> dC/da -> K and G
) |

ay
a,

tan'C

U 157 A



Compliance-SIF

gy ttt 1t
K = 4/sec Wcr Ta 22y
H
o P?dC _ p?dC B —
2 dA 4B da c
K* N | Ta
G = o C = /D L Ta SEC Wda + Cy
P?2dC  sec Tho‘ma Cp = L) — H
— P EBW
4B da E _
=== ) 7,
dC’ B sec WWE 0.2 TadB %sec(%j = tan( ﬁ;) Sinpfﬂ) ~ tan(%)
da P2F v
dC 4 \ ra | B 4 Ta H
—— = rasec — |C= In (cos —) |
da EBW? 1%% s EBm %% EBW)




In (cos E) + 1

4 W
T H

C/C,

0.5

04

0.3

— . . . R s s

0.2

- == W/H=0.5
0.1

|
|
[
|
r~ v ) v

570 one souerdwio)

a/W

compliance rapidly increases
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K as a failure criterion

Failure criterion [K - ch fla/W)ov/ma = K,

fracture toughness

® problem 1: given crack length a, compute the maximum

allowable applied stress
Ke

max = f(a/W)y/ma

® problem 2: for a specific applied stress, compute the maximum
permissible crack length (critical crack length)

F(ae/W)ov/7as = K. —

® Problem 3: compute Fprovided crack length and stress at

fracture
K. = f(ac./W)o+/mac
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Example

A cylindrical pressure vessel with closed ends has a radius £ = 1 m and thickness
t = 40 mm and is subjected to internal pressure p. The vessel must be designed safely
against failure by yielding (according to the von Mises yield criterion) and fracture.
Three steels with the following values of yield stress o, and fracture toughness Kj.
are available for constructing the vessel.

Y

Steel o,,(MPa) Ki.(MPa v/m)
A: 4340 860 100
B: 4335 1300 70
C: 350 Maraging 1550 55

Fracture of the vessel is caused by a long axial surface crack of depth a. The
vessel should be designed with a factor of safety S = 2 against yielding and fracture.
For each steel:

(a) Plot the maximum permissible pressure p. versus crack depth a.;

(b) Calculate the maximum permissible crack depth a. for an operating pressure
p = 12 MPa;

(c) Calculate the failure pressure p. for a minimum detectable crack depth a =

1 mm. 161



5. Elastoplastic fracture mechanics

5.2. Plastic zone models
5.3. ) Integral
5.4. Crack tip opening displacement (CTOD)

167



5.2. Plastic zone models

- 1D Models: Irwin, Dugdale, and Barenbolt models

- 2D models:
- Plastic zone shape
- Plane strain vs. plane stress

168



Singular dominated zone

K1 COS 0 (1 + si 0 COS 39)
o — — 1n — _
W /o 2 2 2

(crack plane)
N o —

Oyy

crack tip

K, oY, . (6). (36
O =— cos| — || 1 —sin| — [sin| —
Y\ 2nr 2 ) 2 2

K-dominated zone

0, =———cos| — [ I +sin| — |sinf —
¥\ 2mr 2 )| 2 2
T, =— cos| — |sin| —

VA 2mr 2 2
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Introduction

® Griffith's theory provides excellent agreement with experimental data for
brittle materials such as glass. For ductile materials such as steel, the
surface energy (y) predicted by Griffith's theory is usually unrealistically
high. A group working under G. R. Irwin at the U.S. Naval Research
Laboratory (NRL) during World War Il realized that plasticity must play a
significant role in the fracture of ductile materials.

K-dominant (SSY)

region

metastic  SMall-scale yielding: LEFM

o still applies with minor

modifications done by G. R.
lrwin

crack tip

\\

R<D
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http://en.wikipedia.org/wiki/U.S._Naval_Research_Laboratory
http://en.wikipedia.org/wiki/U.S._Naval_Research_Laboratory

Validity of K in presence of a
plastic zone

K-dominant

crack tip . o

|

Fracture process usually occurs in

Inelastic . . .

AN the inelastic region not the K-
dominant zone.

o

~ is SIF a valid failure criterion for materials that ?
exhibit inelastic deformation at the tip -
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Validity of K in presence of a
plastic zone

[Anderson]

same K->same stresses applied on the disk

_ stress fields in the plastic zone: the same
K still uniquely characterizes the crack tip

j/‘ q conditions in the presence of a small

[Piastic Zone plastic zone.

B —

<+ LEFM solution
P /
I

@ - Plastic zone

- Singularity dominated zone




Paradox of a sharp crack

—

—

At crack tip:

r=0-—0; =

An infinitely sharp crack is merely a mathematical abstraction.

Crack tip stresses are finite because (i)
crack tip radius is finite (materials are
made of atoms) and (ii) plastic
deformation makes the crack blunt. - = -—--—--—=7

Blunted crack
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5.2.1 Plastic zone shape: 1D models

- 15t order approximation
- 29 order Irwin model
- Strip yield models (Dugdale, and Barenbolt models)

174



Plastic correction:
15t order approximation

® A cracked body in a plane stress condition

® Material: elastic perfectly plastic with yield stress Oys

stress singularity is truncated by

On the crack plane =0 yielding at crack tip
K 19
Oyy =

2T
0yy = Oys (yield occurs)

l 1

4 2 ) ,
K -
'y = 2w\ o 0 ) X
\_ s/ ) fe—— @ H*J}'H

first order approximation of plastic zone size: equilibrium is not
satisfied 175



2.lrwin’s plastic correction

S, :
AN
Py




2.lrwin’s plastic correction

I
<

44 4

Elastic

stress redistribution:

s Elastic-Plastic

"y . I
Tysrs = [ uydr i
0 e
4 | K? ) &
r, =25, = I<—>
p— 4y — .

2 ]
_ ’ﬂ'CTyS ) p

plastic zone: a CIRCLE !!!

1 K

Plane strain

\_ y 177




Von Mises Yield Criterion

1 5 27112
{J'Ez:—ﬁl(ﬂ'l—ﬂ':}z+(ﬂ'l—ﬂ'3)‘+{ﬁz—ﬂ'3,]'] = o,
N

Plane stress Plane strain
T —= 01 = T
© ! v = I '/Kl, ’ o.=(1—-2w)oy =0, =
_ I
Tys — E'.Tyg = T2m\ Oy oys = 5 iyzy _
rp = ﬂfg_ K? 1 2) K? N
- Ty = = (1 — 2w
“’jy P ?rf:rgs T 3
-9
-~ BT |(1-2x0.2)2=0.36
p 3ol
) Y

(a)
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3. Strip Yield Model

proposed by Dugdale and Barrenblatt

Infinite plate with though thickness crack 2a
Plane stress condition

Elastic perfectly plastic material

Hypotheses:

All plastic deformation concentrates in
a line in front of the crack.

The crack has an effective length which
exceeds that of the physical crack by
the length of the plastic zone.

f2: chosen such that stress singularity
at the tip disappears.

179
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SIF for plate with normal
force at crack

2a+2p=2c

Tyt f ft
GFE

Anderson, p64



3. Strip Yield Model (cont.)

y4
bt

brtrtt et t®

Superposition principle

K;=K{ + K7

K

I N

Phbbb bbb b g
fi;(6) + HO.T 1

C o _
Eﬁ#ﬁy— - K =ff
cos 1 (ﬁp)

2D_ys\/aJr p

T
(derivation follows) 0 K Oys

S B cosz=1— —z%+ -
a TO 2!
[K1=0]* :COS( )‘/
a+ p 20y Irwin’s result 0.318

-

’ﬂ'zﬂ'gﬂ

p:

02
\ .

2
N )
T ggys y

(s

0.392 Tp

181 \_

close to ) (Kr)2

Jys




3. Strip Yield Model:
Dugdale vs Barenblatt model

Dugdale: Uniform stress

O y1d O y1d

- - - '-.____- .
't.hq______ __*-__ . _.-*__________,-r"
L1 ()
& |

~yld ‘:Jyld

More appropriate for
polymers
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Barenblatt: Linear stress

More appropriate for
metals




5.2.1 Plastic zone shape: 1D models

- Effective crack length
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Effective crack length

Irwin Dugdale
2a Po,
’4
Oxx O xx
Oyy Oyy
Uy (}_v Plastic Zone
T 7
/
_%¥ 4¥
@ T roTa | T
T Qeff
L 1 (fff.:«ffT
r= 7\ o
(eff = A T Ty Aeff = @ + P

Kiog = flaeg), (for example K g = og\/7Taeg infinite domain) =

Nonlinear equation to solve for A j.g and a.g
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Example

Consider an infinite plate with a central crack of length 2a
subjected to a uniaxial stress perpendicular to the crack
plane. Using the Irwin’s model for a plane stress case, show
that the effective SIF is given as follows

Keﬂ': TO+/TA4

- 11/2

2
1-0.5 (g;)

Solution:

The effective crack lengthis a+ 71
The effective SIF is thus Keg=o0/7(a+7p)

with o1 (f‘ff-:-:l)g




Consider a large central cracked plate subjected to a uniform stress
of 130 MPa. The fracture toughness Kc=50MPavm, the yield strength
O'ys=420|\/| Pa.

(a) What is the maximum allowable crack length?
(b) What is the maximum crack length if plastic correction
is taken into account. Plane stress and Irwin’s correction.

Solution:
(a) 26 = 94.2 mm
(b) Kot = Ve 5 (previous slide)

i 2
1-0.5 (g;)

Keg= K, — 2a = 89.7 mm
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Effective crack length
t t°

i‘ Zﬂ ’l E_ﬂh T : 9
=== :] B ][ 0] )
\ <\ Ops
7 e |
o r.s'\/g

As 2 Increases =

Tvs

LEFM becomes less accurate

nnnnnnnnnnnnnnnnn

2 : . R



Validity of LEFM solution

K-dominant K

crack tip region IEFM: o — f(0) =
Inelastic v ZET

region f{]]'_' = — X 0

\ (00 = applied stress) =

N\

=Y

K\?
re oC | —
."T“

From Irwin, K\ 2 (0]
Dugdale, etc P > | o\

FT;!}'

q LEFM 1s valid when r, < r¢ (or o9 < 0,))

LEFM is better applicable to materials of high yield
strength and low fracture toggghness




5.2.2 Plastic zone shape: 2D models

2D models
- plane stress versus plane strain plastic zones
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Plastic yield criteria

von-Mises criterion

3.5

(Jll — UEE)E + (szrz — 533)2 + (Uaa — r1T11)‘r"r + ﬁ(ﬂffg-i- ET%; + Ef;fl)
2

(Ul — JE’)E + (Uz — Ua)‘? + (51 — Ja)g

2

3 . .
2 Sijij S is stress deviator tensor

1
o™ =0 — - (tro)l

3

Tresca criterion

Maximum shear stress

Otresca — 01 — 03 > 0 max

Von Mises 6>
YeH Swface :

Tresca
Yl Swface

3

“~ mr-plare
(Deviatoric Plare)

(28] +(72+(T;{=U

190

O
2 D von Mises
Gyield
Tresca
(Maximal
shear)
—Oyield o)
Oyield

—Ovyield




Principal stresses:

Mode I, principal stresses

Plastic zone shape

von-Mises criterion
Oe = Oys

(

1+

\
(
\

6

T 0,

0,.0,=—

Sin —
2
1 — sin —

plane stress

plane strain

Kj

1+ cos@ + §sin

)

=/

o1 = K (:08ﬁ
' V27T 2
Ky 0
Ty = COS —
27T
0
g3 — QVKI cos -
VT 2
g
1
0 =4 (
Yy
i 47
1
ry(0) = - (

K

;

(1 —2u)%(1 4 cos ) +

38
— Sl
2

] . 5 _ 7 1/2

, 1172

o_—-0_\
""j _-ll_:|.'_

plane stress

n? @ | plane strain




Plastic zone shape

von-Mises criterion Tresca criterion

( \

1 [ K;\?
ry(Q)ZE( I) [l—l—cosﬁ—l—gsingﬁ}

\ y

plane stress

Tresca plastic zones

— pl.stress
.| — pl.strain sig3 = min

0.6

—plane stress

| --- pl.strain sig2 = min

_D|B.HE strain 05_

\

0.4

1 . .
|t p : { :
.D 5_..........:....-:-..:_..:.................:-..._...-....-.......:...........-......_
- -\._\ 1] ] ." ]
LY 1] 1 _.' 1

06 . . P ) | | |
-0.6-04-02 0 02 Q4 0.6 0.8 R 0 0.5 1 15

rpl(KIz’(:m Efy))
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Plastic zone shape:
Mode I-lII

N

Mode 11

| Plane Stress

| Plane Strain
[

(S

0.7C
- | Mode |
r Plane Stress
035
- Plane Strain
0"
0.35-
()'7[__11||||||||||||||||||||||||||
o i
= Mode Il
P AE
I |:K.FH Hli“ E
0 -
7 511‘;_1 F
| E
E

NI ENTRE FNTRA IR TN CEETE FRTRRARETE FART
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Plastic zone sizes:Summary

criterion | state ry OF T iy
Y 2 (K1/oy)?
. 1 [ Kp\?
Von Mises | plane stress — | — 0.1592
2 \ oy
. . 1 ffj 2
Von Mises | plane strain — 0.0177
187 \ oy
1 (Kr\*
Tresca plane stress vl o 0.1592
y
. 1 ff} 2
Tresca plane strain oy > o9 > 03 - 0.0177
187 \ oy
Tresca plane strain oy > o3 > 09 0 0
[rwin plane stress 1 (h—) _ 0.3183
i {Ty
. . 1 (K1\°
Irwin plane strain (pcf = 3) — | — 0.0354
T l:‘Ty
m ff} 2
Dugdale plane stress — (—) 0.3927
8 \ oy
w ff} 2
Dugdale plane strain (pcf = 3) — | — 0.0436
8 \ 3oy
Source: Schreurs (2012)
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What is the problem
with these 2D shape
estimates?



Stress not redistributed

stress redistribution Gy, 7

(approximately) in 1D Elastic

|
=

S Elastic-Plastic

196



Stress redistributed for 2D

Dodds, 1991, FEM solutions
Ramberg-Osgood material model

E 4] (T " e Low n: High strain-hardening.
T O

e 1 — o0 Similar to elastic perfectly plastic,

E-ﬂ' [Tﬂ [TIZ'
0.35
0.6 -
Plane Strain 025+t
- 50 I
ry 0.4 F / L = 0.15 F
- an - / - .
I K, 2 . Elasllc\ : ] l: K, :| .
ini] Scor & 2 005
7l O ™ T | Oyg
S i 0.05
0 | :
/ 0.15F ™
02F o &
—_— \ 025 >
Oys \
0.4 F B 1.00 \\ _ - (.35
1092

Effect of strain-hardening:

Higher hardening (lower n) =>
s; Smaller zone

Effect of definition of vield
(some level of ambiguity)



Plane stress/plane strain

constrained by the
surrounding material

® Plane strain failure: mode brittle

198 0_.,E. ............ D b

g Moo Plane Stres
® Plane stress failure: more ductile l[KJ 8



Plane stress/plane strain

o gp
Plane strain
0 z (L As the thickness increases more through the
Plane stress thickness bahaves as plane strain
Higher percentage of plate thickness i |s in plane
strain mode for thicker plates j (3 . p
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Plane stress/plane strain:
Fracture loci

=y

V]
-\-.1"-\. T i,

' max — .
e,

1
1
1
)
; o
i il
! 1
i 1 :
x + = {
/ 7 - . o 98 'G
. = )
L | 45 :_._-_'_'.':-"' . \-- . I._r
Gl T ma =
z Plane Stramn

| oci of maximum shear stress for plane stress and strain
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Plane stress/plane strain:

What thicknesses are plane stress?
(£)

o As B Increases:

1. The plastic zone expands (load is increasing)

2. Plastic zone transitions from plane strain to plain stress

2
e Note that rp O (gi)

().5-""I""l""l""l"" K?
(—'J_fl‘.”"" (Jﬁ) - la::fw (high B) plane strain
s [ o B B high (low BB) plane stress
[
i
0.3 B
02 r
0.1 [ Change of plastic loci to plane stress mode
: as “relative B decreases”. Nakamura &
o [ o8

Park, ASME 1988

0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Plane strain

Sy 2
For plane strain condition we must have B > ( j‘ ) X Tp
Vs
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Plane stress/plane strain
Toughness vs. thickness

% . \
Specimen Thickness, in. (b)
Plane strain fracture toughness lowest K
(safe) . /1
. . TN
(|rW|n) K.= K. |1 5 Ie Note that _Blg [H] X (—ﬁ)z
B _ O-I' 1 Oy

oy is the yield stress
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Fracture toughness tests

® prediction of failure in real-world applications: need the value
of fracture toughness

® Tests on cracked samples: PLANE STRAIN condition!!!

Compact Tension

i (2 + %) [0.886 + 4.64% ~13.32 (%)2 + 14.72((%)3 5.6 (%)4]
Test K=

W (i)
ﬂ’ /é_'/ ASTM (based on Irwin’s model) for plane
FoC > strain condition (oy is the yield stress NOT
. {9_ the adjusted oy, = gy /(1 — 2v)):
3 l% a:=045-055W
Y __
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Fracture toughness test

] j
1:0:0:0 - |
ASTM E399 ’.:‘:‘: | [""_{;"2 "
' [
: plane stigine
K. 0oL
ag W
v b
a>25 ( ‘“)
oy -

g . oy e e Y B = .
2 S " ot T o A 3
ot N SR G L S

Linear fracture mechanics is only useful when the plastic
zone size 1S much smaller than the crack size
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5.3. J Integral (Rice 1958)
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Introduction

Idea
Replace complicated plastic model with nonlinear elasticity (no unloading)

Monotonic loading: an elastic-plastic mate
is equivalent to a nonlinear elastic materia

Siress

Elastic-Plastic
©Material

deformation theory of plasticity can be
utilized

Stram
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J-integral

Eshelby, Cherepanov, 1967, Rice, 1968

 Components of J integral vector

Jk_ — / (H’ﬂk — t?' 6ut) dF
aI;L-_

I

* Jintegral in fracture

O N
J=J = / Wni — i) dr | —
C}II m 7o ! \

I’

* strain energy density

#~ _'“\_
Epg E} - j,'
IT = / T34 {'EE‘_i . — e, -
! s i _ positive
e Surface traction & 1

t*i, — Uijﬂj
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Wikipedia

J-integral
Rice used J1 for fracture character ization —
ou,; /“
J :/ (Wﬂl —ti—i) dl’ FTTT S
r 8$1 :r S,
DI
Y !
X ‘. J

EIE

T -'Kl

=

)

J — integral
(1) J=0 for a closed path

(2) is path-independent



5.3. 1. Path independence of J

210



J Integral zero for a closed loop

Ou;
Jp — / (ﬁ"nk_ A ) A —
I

@:E;ﬂ
I
J;{-_ = / (IV&;& — Ui_j'uf!k) T4 dl’
I €9

inside I" no singularities Gauss theorem q

qfﬁ- = / (fﬁjk_gij.jui.k _gijui.ﬁ'j){u?
Jr \ Oz;

oW AW e,

and using chain rule: - = -
g ﬂir_ii ﬂfm_n E}J'j

dW  Ospn
Jp = / ( — Ojk — Oij Uik — Ué-j'“--i,kj) df?

depn O
7.

211

—

t

:

ﬁf_‘\l
_/

positive



.

2

AW Ocpn

J Integral zero for a closed loop

depn O

homogeneous hyper-elastic

Ojk — OijjUik — Uf-j‘“--i,fcj) df?

linear strain

ow

O mn

Tmn —

equilibrium equations

1

T |

|'/ __
/] 0
N
K

——

. ||

t |
Vv

S

o

ﬁ—\l
_/

-~

i

positive

—_

€1 i

Emn = ﬁ(um,n + u‘n._m-)

Jij._j =0

1

(U?nnum,ﬂ.k — T4 'U-i'.__.l;j) df2 =0

ﬁgm.n.(“--m._nk + U-n._-m?.:) — U343 'H-i.__}.:_-j} df? =

212
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Path independence of J-integral

J is zero over a closed path

0=Japcpa=Jap+ Jpc+ Jocp + JIpa

LD

AB, CD: traction-free crack faces X

t; =0,dro =0  (crack faces: parallel to x-axis)

Jag =Jop =0 which path BC or AD should be used to

compute J?
Jpc +Jpa =0 # [JBC;; JAD]




5.3. 2. Relation between J and G
(energy release property of J)
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Energy release rate of J integral:
Assumptions

. Homogeneous body

. Linear or non-lnear elastic sohd

. No mertia. or body torces: no initial stresses
. No thermal loading

. 2-D stress and detormation feld

. Plane stress or plane strain
. Mode I loading

. Stress free crack
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Energy release rate of J-integral

crack grows, coord. axis move

i_@ 0 Or Oz

' )

. da Oa Ox0O0a Oa
d f —dA f L ds d o0 0
a /

I1 = WdA / t;u;ds

= —1

" da da  Oa Oz

Self-similar crack growth

dll ow oW
(o %
8_W o GWSEE-:}-
da  Oe¢;; Oa

861-3- 1 @ Sui Suj
da 2 Oa

3%') nonlinear elastic
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J-integral  a:B-o

a_W — O 1 2 811,1 | auj symmetric skew-symmetric

8{1 Y 2 8{1 8$j | 8:171

da 7 Oa 0z ; 7 Jz; Oa a—WdA 311,% N
A Oa 8{1

9, 8‘11,1 811,1
L; Oij 8$j 9a dA = /I\O'Ejﬂj 9a ds Tijj = ()

Gauss theorem

/ HA + 3’”’% ¢ Gauss theorem, nzds = dy

J-integral is equivalent to the

a1 [ 8 energy release rate for a
U . . .
/ (Wdy — 1, ds ) nonlinear elastic material under
da I 83}' . . .

J .. quasi-static condition.

\ =

g




Generalization of J integral

* Dynamic loading

* Surface tractions on crack surfaces
* Body force

* |nitial strains (e.g. thermal loading)
* |nitial stress from pore pressures

cf. Saouma 13.11 & 13.12 for details
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5.3. 3. Relation between J and K

219



J-K relationship

By 1dealizing plastic deformation
K}  Ki | Kip as nonlinear elastic, Rice was able
~ E'  E' 2y to generalize the energy release rate
to nonlinear materials.

dll ou; . :
=/ (Wdy—t@ - d5> (previous slide)
)

G

da ox
# J:Kjg , K?f , K?H
E' " E = 2up

\_

J-integral: very useful in numerical computation of SIFs
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J-K relationship

In fact both J1 (J) and J2 are related to SIFs:

ou J1 & J2: crack advance for (0 = 0, 90) degrees
T = f (wdy _ tj.—df) ( ) deg
2

du
'JTQ — /F etﬂd;lf — tgdrj 7J£-L 9 — U

J = Ji—1iJo Hellen and Blackburn (1975)

I+l 4+k), y o
. ié J(K? 4 K + 2K K1) ﬁ

I..l

, , B E plane strain
- - / — ':ll
7, — Ki + Kj; &I plane stress
1 - k
Iy = —2K 1K1 Note that if K7 = a, Ky = b is a solution the
£ general solution is:

Ky==xa Kg==band Ky =+b, Kiyj = +a
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5.3. 4. Energy Release Rate, crack
growth and R curves
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Nonlinear energy release rate

Goal: Obtain J from P-A Curve uh”

om __1om
9A B da
e /| =U,— W: Potential energy

J =

e W: External work

e U, = [, edv: Internal energy

e e(eg) (or w(eg)) = [,° o(e)de

1. Load Control (P fixed, u increases):

Displacement

W=Pu = II=U,—Pu

2. Displacement Control (u fixed, P decreases):

IT = -U; load control W=0 = IHI=U
P
U= ./” ud P (complimentary strain energy) I =U, displacement control
1 [oU; 1 [oU
J = i ( &).-:; )P (load control) J = ~3 ( a;)u (displacement control)

Note U, = U} = %P‘H for linear solid
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Nonlinear energy release rate
Goal: Obtain J from P-A Curve

AP
LTEI — }11 - }12 Pl ...................................................................................
ET{:.I-.:' — 4-1 - 4-3 :. ..............
Wi = Aq + Ay P

JH—{EEE—EH}—HIE—GH )

-1 All
J =
B Aa

1
" Ba

(shaded area)

\

224
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Nonlinear energy release rate

Goal: Analytical equation for J

AIT
BAa
Ueg — Uey — Wi
BAa
1 {UEQ — Ugq B Py + P us — uy

J=—-lim, .g

= —lim,_.q

= —lim, .g—
““B a9 — a1 2 as — a1

— l _dLTE 4+ Pd_u

B da da
1 dl/ du 1 dl, 1 du
"LE{_ da +Pr.1T} _E{_du LR

. . . 2 -
e Compare this equation with G = —E—B% = -

g
]

dc’
da

bt
v

e For linear case U, = %Hug and P = Ku. Show that

equation for .J agrees for the two for G
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Nonlinear energy release rate

Goal: Experimental evaluation of J

Landes and Begley, ASTM 1972
* P-A curves for different R sty sy <, '
crack lengths a &
J as a function of A
* Rice proposes a method
to obtain J with only one
test for certain

geometries

(1]

cf. Anderson 3.2.5 for details

(¢)

N
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Crack growth resistance curve

A
* A:Rcurveis nearly vertical:
J
* small amount of apparent ’ > },.f
crack growth from blunting 7
e .Jr  measure of ductile fracture )

Initiation

toug.hness EdJ,
e Tearing modulus 1r=—

r:r%b da

is @ measure of crack stability

-
(‘rack Extension
If the crack propagates longer we even observe a flag R value
(1) Crack Blunting (2) Fracture Initiation (3) Steady State Crack Growth -)2.,,.
- Plastic Wake
Iﬂ‘! %
H—'ﬂ"”—b-l
Rare in experiments because it requires @
large geometries! >
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Crack growth and stability

J, JR Instability in

Load Control

( rack Size

* The J; and J are similar to R and G curves for LEFM:
* Crack growth can happen whenJ =1,

 Crack growth is unstable when ‘;‘TJ - deH
L e
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5.3. 7. Fracture mechanics versus material (plastic
strength

230



Governing fracture mechanism and
fracture toughness

FRACTURE TOUGHNESS (K;c)

231



Fracture vs. Plastic collapse

P
P % T
Onet — — 0 P
W-—a | W-—a =W unit thickness
(cracked section)
d
. %4 a
Tc \ \
Tau 1‘1A N short crack: fracture by plastic collapse!!! W
I \
A \:\/—\ - high toughness materials:yielding l P
. e before fracture

232
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Example

Example 411 Estimate the failure load under uniaxial tension for a centre-cracked
panel of aluminium alloy of width W=500 mm, and thickness B=4 mm, for the

following values of crack length 24 = 20 mm and 2a = 100 mm. Yield stress o , =350
MPa and fracture toughness Kic=70 MPa v/m

Solution There are two possible failure modes: plastic collapse and brittle fracture. We
will assess the load level required for each mode to prevail.

(i) 2a = 20 mm.
Plastic collapse load Fpc = o, - (W —2a)- B=672 kN

Kﬂ:
Jmasec(ma | W)

Fracture load F.= o, - W - B where o, = =394.6 MPa

thus F. = 790 kN.

The actual failure load is the smaller of the above results, 672 kN.

(ii) 22 = 100 mm.

Plastic collapse load Fc = o, - (W —2a)- B=560 kN

K.ﬂ:’
Jmasec(ma | W)

Fracture load Fc.= o_ - W- B where o_ = =172.2 MPa

thus F. = 334.57 kN.

The actual failure load is the smaller of the above results, 334.6 kN.
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5.3. 5. Plastic crack tip fields; Hutchinson, Rice
and Rosengren (HRR) solution

238



Ramberg-0Osgood model

£ o a \"
— — I (¥ -
Eqy0 Ty0 Ty0

: ¢ )
Compare with € = € 4 €P

Ramberg-0Osgood foro = 0.01

A
e Elastic model:

Unlike plasticity unloading
in on the same line

3t * Higher n closer to elastic
g perfectly plastic
% | 2 3 4 5 6
E/E
y0



Hutchinson, Rice and Rosengren(HRR)
solution

* Near crack tip “plastic” strains dominate:

TL
e T
S-o(Z) %
€0 an

* Assume the following r dependence for o and ¢

C1
g = —

.r.T
B C9
e =
1. Bounded energy:
1 | 1
EX — =T Yy = r =
7 T“T TTY Il +n
v =
2. g-orelation % TR
Yy = ne
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* Final form of HRR solution:

HRR solution:
Local stress field based on J

HRR solution

EJ yN=T _
Tij = O T[T, )

J
oy It

Ti

e E.J S
'F!'_I-,i — - 5 Ez'_;i'.,;'"- Ir:"’I
E \aogl,r

J plays the role of K for
local o, g, u fields .

LEFM solution

1 6 8 10 12 14 242



HRR solution:Angular functions

1.7

- S
1.5 \\\\ . 0“'.
< 5
\\\ \\\-

3 € i
,J
0s — e
.f--"/f- -,-0’0
’/-
o
a8

— 1.5
—— -~ »

\\ N
\‘\ \l
\_-\‘\_~
\'\_ '\‘\_ 0.5
S ~—
. '\_\ -4
——

243

TYrTT

L 4

X2

lALA

Jll




HRR solution:
Stress singularity

HRR solution

Log (/L) ryL
‘L, LEFM solution

Stress is still singular but with a weaker power of singularity!
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5.3. 6. Small scale yielding (SSY) versus large
scale yielding (LSY)

245



Limitations of HRR solution

Limitations of HRR analysis

5 1
e Small strain: € = % (Wu + ?Tu) R n=10
(accurate for € < 0.1) 45 | Large Strain Analysis
] . ) O i - = - - - HRR Singularity
e Small deformation theory (e.g., not using ry 4
PK stresses, etc)
? O’o | N
. . . . 3§ —
e [lastic HRR model mstead of plastic |Strcss e
model by Crack Blunting
3
e Crack tip blunting: = 0,, =0
~20

McMeeking and Parks, ASTM STP 668,
ASTM 1979

ﬁ: CI'ELCI{ tlp DPEﬂiﬂg Sharp crack
K2
. Blunted crack
5 i oy D un
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From SSY to LSY

2

Large strain radius r, oc 4 (CTOD): 6 =0 ( K

Log(a,,)

plastic radius: 7, = O (

Eay ) A

. _ _ . -3 .
K-dominant radius: r, = QO (%3—) -

a: applied stress

Log(qy,)

- Large Strain Region

J-Dominated Zone

K-Dominated Zone

No Single-Parameter

Characterization

Log (r/L) rylL

Log (#/L)
247

SSY (Small Scale Yielding)

Py €1

& r, =

Ti
r

Elastic plastic condition

Iy "“-'5- il.rll o illl'ﬁ —

LSY (Large Scale Yielding)

I'n 72 Tp

Note that % X Iiijr‘f‘}




- Large Strain Region

J-Dominated Zone

K-Dominated Zone

No Single-Parameter

Characterization

From SSY to LSY

4

Log(a;,)

LEFM: SSY satisfied and gener:
have Generally have

0 < 0y

Relevant parameters:

G (energy) K (stress)

Log(a;,)

PFM (or NFM): SSY is
gradually violated and

o~ T
\ Y
/L \ Relevant parameters:
I
Log (/L) » ] (energy & used for stress)
/'y s
Logay| = = ~Ag \ LSY condition:

“%:* = No single parameter can

/\ characterize fracutre!

S J + other parameters (e.g. T
\ stress, Q-J, etc)

248 Log (/L) 248



LSY: When a single parameter (G, K, J,
CTOD) is not enough?

e Under considerable plastic deformation and crack propagation when
unloading and non-proportional zones grow out of J dominant zone
with crack propagation. Reasons are:

— Unloading: In J integral analysis plastic model was replaced by a

nonlhnear sohid

— Single-parameter identification not valid since various stress com-

ponents increase at different rates

A Nonlinear vs plastic models

Nonproportional

Elastic . ; .
Plastic Loading Stress - Elasti®

Unloading

_ Crack growing out of J-
- dominant zone

Elastic-Plastic
Maternial

J-Dominated

Aa :
"—’| /one
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LSY: When a single parameter (G, K, J,
CTOD) is not enough? T stress

e Higher order terms in stress expansion:
K, Cfaxp CTaxE
— T stress (linear analysis) Oy = 2 f3(6) +

+ Constant ¢, in LEFM expansion

+ Nondimensional biaxiality ratio: § = 5372 *n pl ane strain
+ Example = —1 for mode-I crack in infinite domain. _ e ARananan
+ T stress redistributes plastic stress el et S /
#+ 3(T) depend on particular geometry /loading configuration % | R SE(B) |
- N LT | > =
+ Effect L][: T'(5) on toughness: = ]
é I- SENT DENT— |
High (+) T = Constrained (triaxial) stress = Toughness >, Ductility ~, £ — |
Low (-) T = Lose constraint = Toughness ,” Ductility 7 q—ca
_ . ) ) ) _ _ 0 o1 02 03 04 05 06 07 08
# 1 stress also influnces crack path stability (particulary in dynamic fracture) alW
5
. . . . . : Modified Boundary Layer Analysis
Plastic analysis: dis, redistributed! \ i=1)
. _ @ - HRR Solution it .
Kirk, Dodds, Anderson ) Positive T stress:

L. - Slightly Increases
Tyynd increase

o < [
3 \\ ) A== C
:\\ —  —————— %= triaxiality

High negative T stress:
- Decreases  Tyy
- Decreases triaxiality




LSY: When a single parameter (G, K, J,
CTOD) is not enough? J-Q theory

— (J parameter {J-{} theory) Valid for nonlinear analysis

* Added as a hydrostatic shift in front of crack to (HRR) stress fields

7 == (05 )r=0 + Qood;; [:|":'|

Crack tip ~

* Similar to T positive @ increases triaxiality and reduces fracture resistance

High (+) @ = Constrained (triaxial) stress

Low (-} ¢} = Lose constraint

J.

J(Q)

S

- Toughness ™, Ductility ™,

» Toughness . Ductility

x o

— More number of parameters: With extensive deformation two-parameter models

such as K, T or J, Q) evnetully break.

J. (kPam)
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n: strain hardening in HRR analysis



5.4. Crack tip opening displacement (CTOD),
relations with J and G
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Crack Tip Opening
Displacement

R N
COD is zero at the crack tips. [
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Crack Tip Opening Displacement:
First order aproximation

I COD 1s taken as the separation of the faces of the effective crack at the tip of the physical crack

K+ 1 ry __ 3-v CTOD
uy = 5 —Bin\/o- FTI . .
f m l : 0, _ A K7
T :i KI 2 E \ uy_WJySE/
i 2m Oys 2/1121_'_1}

(Irwin’s plastic correction, plane stress) 254




“rack Tip Opening Displacement: Strig
vield model

2a,

|“ 2a
> B .2 _ 2 | ~  20..
\ K=0 7 -9 7_‘* |2 ‘ZI /=—Blz0,-an,]
T =\ 1=k T

Stresses that yielded K=0

1 N 1o (22 - [
Ly = %Irﬂz — O acoth™ | .,fﬁ] — |- zcoth™ 'I— 4 5
nE a \ 1=k -V 1-k

: 2 4
v = ] S =2 :8(}_}5{?]“ l :?SO'H(T I(r o +L T o
) T k TE | 2\ 2 Oy 121 2 0y
g,
K._
_ 1
For 0/04—0 0 =
0 E




CTOD-G-K relation

Wells observed:

The degree of crack blunting increases
in proportion to the toughness s> Fracture occurs 0
of the material

|
>,
!

4 K? material property
0 = independent of specimen
a JBSE T and crack length
52 # Gr = Zgysa (confirmed by
G, =1L experiments)
'TE

Under conditions of SSY, the fracture criteria
based on the stress intensity factor, the strain

:I|> energy release rate and the crack tip opening
displacement are equivalent.
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CTOD-J relation

* When SSY is satisfied G =J so we expect:

G =mo,0 = |J=mo,0

* |n fact this equation is valid well beyond validity of LEFM and SSY

 E.g. for HRR solution Shih showed that:

n

ntl
{J ] ru(6, n)
oo lr

oo,
" E

I/n
o
EE}T{H.HJ[ % {.ﬁT[}T.H)-I-ﬁTUT.H)}]
d =— E "

IH
* O is obtained by 90 degree method:
Deformed position corresponding to r* =rand

¢ = -1 forms 45 degree w.r.t crack tip)

| | | | |
? = H}-{ ", T)=r * _“I{ rE, ) dn 1.0 Plane Stress
2 " J
H(T T ﬂ J ]- ~ 0.8 o= dn o__
pk = | {u(m.m)+u (m.n)}" :’ J = mago =
( E ) X 3 {Tﬂfn {:] 0.6
"G Un 04— :
_ Eﬁr{ﬂ'.ﬂl[ . {ﬁT[H.H)JrﬁTUT.NH] 0.2 0.004
fOr ?«jr;.. — L n]f _ ' E - ] ; 0.002
| ] “n” | | 1 | Rl
d, I 0001 02 03 04 05
758 ST o

1/n



CTOD experimental
determination

Plastic Hinge

Y _ T :
e __rW=a) similarity of triangles

CMOD r(W-a)+a
T :rotational factor [-], between Oand 1

For high elastic deformation contribution, elastic corrections should be added
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6. Computational fracture mechanics

6.1. Fracture mechanics in Finite Element Methods
6.2. Traction Separation Relations (TSRs)
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6.1Fracture mechanics in Finite Element
Methods (FEM)

6.1.1. Introduction to Finite Element method

6.1.2.Singular stress finite elements
6.1.3. Extraction of K (SIF), G

6.1.4.) integral

6.1.5.Finite Element mesh design for fracture mechanics

6.1.6. Computational crack growth
6.1.7. Extended Finite Element Method (XFEM)
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Numerical methods to solve PDEs

® Finite Difference (FD) & Finite Volume (FV) methods

® FEM (Finite Element Method) FD !

® BEM (Boundary Element Method)

® MMs (Meshless/Meshfree methods) T
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Fracture models

® Discrete crack models (discontinuous models):
Cracks are explicitly modeled
- LEFM
- EPFM
- Cohesive zone models

® Continuous models: Effect of (micro)cracks and
voids are incorporated in bulk damage
- Continuum damage models
- Phase field models

® peridynamic models: Material is modeled as a
set of particles

265



Finite Element Method

-.;___--i':‘--';-' ) .'._._.-: ) -___;;;F: : : : ‘ .
Pare = A/ L7
WA iy e e g - - _
I__.-" ____--"L—__,_a- _._‘_,.- a e 1
Ay Ll g hy = (1 + 1) {1+ 23] Global level: The nodal dof at the center node
is shared by all four elements

Element level: 4 Shape functions for a

by =L - 20 - by =g (14 (1) linear quad element

1D 2D 3D

Beams i Triangles Ouadrilaterals Tetrahedrons Hexahedrons Pentahedrons
|
I
|
| A

. - :

!
i e

2-noded !
i J-noded 4-noded B-noded
| f-ngdad
| |

e i . !

i T :
! - B | I -
i ..

3-noded | E-noded B-noded _
I 10-noded
g all-neded 15-noded

266



6.1Fracture mechanics in Finite Element
Methods (FEM)

6.1.1. Introduction to Finite Element method

6.1.2.Singular stress finite elements

6.1.3. Extraction of K (SIF), G

6.1.4.) integral

6.1.5.Finite Element mesh design for fracture mechanics

6.1.6. Computational crack growth
6.1.7. Extended Finite Element Method (XFEM)
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|Isoparametric Elements

£  Geometry is mapped from a parent
2 FE¥, element to the actual element
ST * The same interpolation is used for
| geometry mapping and FEM solution (in
o the figure 2"9 order shape functions are
5 {j'i-f X used for solution and geometry)

| : -3. = - « « Geometry map and solution are
= 2 3 expressed in terms of ¢
parent element Actual element
Order of element
M 3 9
4 10
" 3 4 7 1 .
f 6 8
] 2 8 1 te 7
1 1 1
L S 5 5 6 2
a) Linear b) Quadratic ¢) Cubic
Interpolation space Physical space

(Same number of nodes
based on the order) 268



Singular crack tip solutions

Log(a,,) P\
Ti: = ) ( - aij(m, @)
’ oyt -
¥ L r!
h ey E.J ]T_r - (g
'Fl"_ i F:I._” _-I
J E e'mﬁ' I.r .

Log (/L) rdL

r -;r}.—|—|

e NLEN (PEFM): For HRR solution stress L and Htrain are still singular =

— for elastic-perfectly plastic (n — o0o0) stress is bounded and strain iingular
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Isoparametric singular elements

Quarter point

Quad element Quad element

3

NG

|
2 3
|

Quarter point collapsed

Quarter point
Tri element

! Improvement:

singular form #Inly along these lines Improvement:
NOT recommended

Problem

- Better accuracy and
less mesh sensitivity

1. . .
- ~rom inside all element

- Solution inaccuracy and sensitivity
when opposite edge 3-6-2 is curved

* Elastic- Collapsed Quad >
perfectly elements
plastic 4
e L L

r 270

. :
S YR

2nd order 3




Motivation: 1D quadrature element

Find a that yields € singularity at x,

[soparametric element.:

1. Geometry:

T )1 1 T n
e Zlei“\-'.i{.f);r?; — r—=1L {5‘2{5 — )+ §§ + D:} ,,Jli = ,:; -
dz 1 1 n \
d—‘S:L{QE(g—&VrE} W W
= Ny =1-¢ 5
nonsingular
d
Singularity of e(z) = g—ﬁ = d_z f;ll_é at z1({ =—1) =
dx _ 1 1 |
d_{;-(&:_l):[] :>—2{§—&')—|—§:U:}(’.‘t:1 £ =—1 £=10 ¢ =
. Parent element
\ . -
Hence, ] 2
= £(£+1)2 = |£=2 Z 1 o [ ~
T - Ve n
Il v v
_ o
5 @ ® &
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Motivation: 1D quadrature element

2. FEM solution

e Displacement

3 AT
u=X"_Ni()u; =

N F(E— 11] . F{as: 1)] s 1€ =

2 2
L (3 dus) + 22 ( us)
U= u1 + —ou] — U2 +4us) + —/ (U1 + u2 — 2u3
VL L
which matches \/r from asymptotic displacement solution.
e Strain
_du _ du dx
d‘f _dxﬁ—dgfdg )
d_g — “’E — '\I."‘-_[_'L > —
261 2 41] .
g_g* :ul[ 5 ]—I—ug[“c’;}—lugt_—fj
! k : + 2ug | + : (2ug + 2 dugz)
£ = ——uy — —u s — (2u uo — du:
77 \ T T g 3 7 (2u1 2 3

Strain field too matches asymptotic term —=

'\I,l_.' i

272
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el Yl 1
Il |
s "
Z NEe-1-¢ T
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] 2
o ~)
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Moving singular € position

Strain singularity at £ means

f-sfag-o}

must be zero. Accordingly,

Singularity at infinity(§ — —o0)

Singularity at crack tip(§ = —1)

Singularity inside element(not of interest)(—1 <

£ < 0)

Transition elements:
According to this analysis
mid nodes of next layers move —

to % point from % point ———

Lynn and Ingraffea 1977)

1D e remsuis :
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6.1Fracture mechanics in Finite Element
Methods (FEM)

6.1.1.Introduction to Finite Element method

6.1.2.Singular stress finite elements

6.1.3. Extraction of K (SIF), G

6.1.4.) integral

6.1.5.Finite Element mesh design for fracture mechanics

6.1.6. Computational crack growth
6.1.7. Extended Finite Element Method (XFEM)
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1. K from local fields

1. Displacement

X

'L:I:.II-F r EII'
yr,0=m) = e AN K= lim f
V2mE' r—0

plane stress

, E
o
1—v?

plane strain

or alternatively from the first quarter point element:

=7, + - )%
Recall for 1D - KI -
::/-;E B A ) + 2% (ul + uo — 2’15—3)
K 126G [2m 0 1
_P{II 2 K+ | v 0

275

Mixed mode generalization:
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1. K from local fields

2. Stress

Ky = lim (a;’?';r-r ETQQ|,5|:.[]) ;. K= lim (JEWT ET12|3:.[])

r—0 r—

or can be done for arbitrary angle (0) taking o ] 1 —=
angular dependence f(0) into account ' |

Stress based method is less accurate because:
e Stress is a derivative field and generally is one order less accurate than displacement
e Stressis singular as opposed to displacement
e Stress method is much more sensitive to where loads are applied (crack surface or far field)
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2. K from energy approaches

1. Elementary crack advance (two FEM solutions for a and a + Aa)
2. Virtual Crack Extension: Stiffness derivative approach
3. J-integral based approaches (next section)

After obtaining G (or J=G for LEFM) K can be obtained from

-

~2 A Y E plane stress
.{ II!l.. .I!T — E {:_T E = 1 E .
7= plane strain
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2.1 Elementary crack advance

For fixed grip boundary condition perform two simulations (1, a) and (2, a+Aaq):
All FEM packages can compute strain (internal) energy U,

SESEL LL1LL

| | |
a i a4+ Aa
/o /
V V
1 2
: . | d-UE B - 1 {ELTf ) 1 LTA({I + ﬂi’l) — L'T?' (fL}
fixed grips - = 0 = G =— B an ~ TR A

Drawback:
1. Requires two solutions

2. Prone to Finite Difference (FD) errors
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2.2 Virtual crack extension

* Potential energy is given by

I = 3 [u) (K] {u} — [u){p)

aH 11 - | L u . _l
"= = Kb+ Sl T el - TP - LT
11 o ; . s}
=~ 2 (K){u) = {P}) +5lu) % () — (w222
""_-V-_"r
0
1, OK], O{P}
G = _ELU’J li‘_)ﬂ {_LI',} -+ LHJ 3{1
Furthermore when the loads are constant: = Kf = —l['llllr JIK] [u]

¢ Only the few elements that are distrorted contribute to %

¢ We may not even need to form elements and assemble K for
B =1 - o ) T

a and a + Aa to obtain ij":r: We can explicitly obtain % for

elements affected by crack growth by computing derivatives of

actual geometry of the element to parent geometry.

* This method is equivalent to J integral method (Park 1974)
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2.2 Virtual crack extension: Mixed mode

* For LEFM energy release rates G, and G, are given by

2 | 2 -2
_ K7+ K7, N Kip;

= E' 2
— 2K Ky
B o= Gy=——f

* Using Virtual crack extension (or elementary crack advance) compute G, and G, for
crack lengths a, a + Aa

_ T
. _Ki+Kp | Kip 2
'-‘r — (__r e ] :
; —2K K 9 _ U
-I—_'I- = (__r-_l — EF
© Obtain K anclf Trom: s+ V’fsﬁ 4+ 8 | Note that there are two sets
. . - .
Kr= 4 of solutions!
K SF 87+ 532
1 —
11 4
§ = 3\@ and a = '5]+”.}f:] +K)
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6.1Fracture mechanics in Finite Element
Methods (FEM)

6.1.1.Introduction to Finite Element method

6.1.2.Singular stress finite elements

6.1.3. Extraction of K (SIF), G

6.1.4.) integral

6.1.5.Finite Element mesh design for fracture mechanics

6.1.6. Computational crack growth
6.1.7. Extended Finite Element Method (XFEM)

281



o J integral

1. LEFM: Can obtain K, and K, from J integrals (G = J for LEFM)

K2+ K2, K2
I o= Oy = FMJF gm
E 2p
—2K 1 Kyg
Jy = Gy=——3

2. Still valid for nonlinear (NLFM) and plastic (PFM) fracture mechanics

Methods to evaluate J integral:

1. Contour integral: 3,
& Iy = f (-u.ld-y—tﬁdr)
r dx

Jo = ] (.-t.:-'d.r — tgdf)
r dy

2. Equlvalent (Energy) domain integral (EDI):
e Gauss theorem: line/surface (2D/3D) integral surface/volume integral
* Much simpler to evaluate computationally
* Easy to incorporate plasticity, crack surface tractions, thermal strains, etc.
* Prevalent method for computing J-integral

9 | T

o / ~ Volume integral
Lineintegral — | /¢
€ \’/ EVANR ¢=0




J integral: 1.Contour integral

e Stresses are available and also more accurate at Gauss points

* Integral path goes through Gauss points

]

a e

|

_ M
‘“‘-"*H_, e ‘x\_F v -"'6';'
( \\\ - “{f\}x\u _é
i T2 NERA
oo [ \/\r e
: : : : { ‘______T___ - / ~~ Gauss Point
[fj N \n | /-' Numbering
¢ t \ L ] Sequence
A N — ) y
L]
'
od L |17 ou du  Ov vl O
J = wdy — t - —ds Je :/ <—[ — 4T (— —) _]_u
r vay dr 7 112 UIU;I:+ Y E)-y+i?3:r +Jy&)y on
\ - N
\ w dy
ou Ov
Cumbersome to formulate - [(Urﬂ-l + ﬂ:yﬂ-z)% + (Tzyn1 + oyng) @]
the integrand, evaluate ” % ’
normal vector, and integre ~
over lines (2D) and surfaces ;’(@)QjL (@)’" v
(3D) V\ay o) ("
e )

Not commonly used
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J integral: 2.Equivalent Domain
Integral (EDI)

General form of J integral

Inelastic stress

J=1I J. {11‘+T}5”—
r

i 7

..
Y B.Tl

\ Can include (visco-) plasticity, and
thermal stresses

Kinetic energy density ,__mfﬂf _|_ EP n ﬂ_rElﬁ _|_ EL}
1 &)u.;; &)ui
= 5P Elastic ‘/ / l
2" Ot Ot
temperature)
rﬂ —}[I: J contour approaches Crack tip (CT) :>
Accuracy of the solution deteriorates at CT :>

Inaccurate/Impractical evaluation of J using contour integral
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Jintegral: 2. EDI: Derivation

Divergence theorem: Line/Surface (2D/3D) integral W@/Valume Integral
Application in FEM meshes

To | T

Original J integral contour 2D mesh covers

crack tip
Surface integral after * Contour integral added to create closed surface
using divergence theorem * By using g = 0 this integral in effect is zero

J dul . E}u
J=J (W+T)o, -0, o' ndll = Uy—L—wﬂh gm. dTl — —LqdTl"  Zero integral onT'; (g = 0)
r, g E}r dx r++r Eh’

.~ Divergence theorem

=) o, . o
—d_ - — L qdT
/= J dr. ‘[ﬁ WO ] ’{ﬂ .'r_-r_ﬁ o, 1
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J mtegral 2. EDI

To |

-
/oA \{?ni
€2 I+ .;,:f/z"l / | \ g =0
__L_Hj“:::— m”j W
T / I L1
.HF irl\-]}_] _ / ’;
\ 4
General form of J ———

[ 2
- | [a—ﬂ
* X

Plasticity effects l Body force Nonzero crack
Thermal effects surface traction

Simplified Case:

(Nonlinear) elastic, no thermal strain, no body force, traction free crack surfaces

dut. J
J= I ys |24 4
L* O 31 e’ B.TF

1 0Ax

This is the same as delLorenzi’s approach where 1= A0 o, r I,
finds a physical interpretation (virtual crack extension) i
-
G :LJ- [{T..%—uﬁ ]aﬁx' dA :@ :‘
Aadyl 7 dx ") oox,
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Jintegral: 2. EDI FEM Aspects

* SincelJ, —8theinnerJ, collapses to the crack tip (CT)
* J, will be formed by element edges

* By using spider web (rozet) meshes any
reasonable number of layers can be used
to compute J:

2 layer 3 layer

e Spider web (rozet) mesh:

* One layer of triangular elements (preferably singular, quadrature point

1 layer

elements)
e Surrounded by quad elements 7%%
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Jintegral: 2. EDI FEM Aspects

* Shape of decreasing function g:

sl A ol

Pyramid g function Plateau g function

Sea

* Plateau g function useful when inner elements are not very accurate:
e.g. when singular/quarter point elements are not used

Al Ol Bl R

3
b
b
b

- = —— =0 These elements do not contribute to J
i Jx;
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J integral: Mixed mode loading

* For LEFM we can obtain K, K,, K,,, from J,, J,, G,,:

_ du; dq i, i
.IulL — : T T {“{
' .[1'= (ﬂ-u ;. ﬁ.‘{'j ! ﬂ:i';ﬁ-) :

dug dq 1 9q :
Grir = [ Tgi—— —w — | dV
SR T ( 3 dx 1

Ky = %\.,’fEi( Ny —Jo — Ga) + flr}r]—f}—f_rgj)
Ky = —},—\.,“"lEi( f'r{f]—.l-'r}—f_r:_-,J— f'rlr}r]—f}—f_rgj)
Kriir = ‘um Nikishkov and Vainshtok 1980
F—E _1 _1:;:} . (1 :i H) Hff:m' E* = £, for plane strain and E* = E for plane stress
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6.1Fracture mechanics in Finite Element
Methods (FEM)

6.1.1. Introduction to Finite Element method

6.1.2.Singular stress finite elements

6.1.3. Extraction of K (SIF), G

6.1.4.) integral

6.1.5. Finite Element mesh design for fracture mechanics

6.1.6. Computational crack growth
6.1.7. Extended Finite Element Method (XFEM)
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Different elements/methods to compute K

1.04 105 1 . :
K ; | Through Thickness Crack in Flat Plate ' ' Through Thickness Crack in Flat Plate Through Thickness Crack in Flat Plate
- | Subject 1o a Uniform Crack Face Pressure | | Uniform Crack Face Pressure \('2 5 2D Plane Strain Analysis
o’ Jra 2D Plane Strain Analysis K ,"” - 2D Plane Strain Analysis | O, N2} a=0
F | O=r | oo |;

1.02 | (o} i ra | —®— /4 - Point Nodes in o N Remote Membrane Stress
| | First Element Ring
- 1| —a— Mid-Side Nodes in | 0.8

First Element Ring

—8— 1/4 - Pomt Nodes in

| { ! First Element Ring
— 2 - : .
I ; —&— Mid-Side Nodes in
4 | First Element Rin&_l,
i : i -
: —®— /4 - Point Node in | 0.95 | 0.6
| First Element Ring 1

—&— NMid-Point Node in
First Element Ring

' 0.4
e | 2 3 4 5 £ 0 0.02 0.04 0.06 (.08 0.1 0 0.02 0.04 0.06 0.05 0.1
Contour # rla rla
Jintegral EDI K from displacement u K from stress &
dut d E'w. 77 - .
- |99 ST uy [2T] \ Kr = lim (V27r 022|p=
og.—L—wo, |——dA4 Ky = lim - (6 = m) = 22|9=0
_[{*[ if a:-:, i r_:}.TI. 0| 4 1||'.' r : r—0

* Jintegral EDI method is by far the most accurate method
* |Interpolation of K from u is more accurate from o: 1) higher convergence

rate, 2) nonsingular field. Unlike o it is almost insensitive to surface crack or
far field loading

e Except the first contour (J integral) or very small r the choice of element has

little effect
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Different elements/methods to compute K:
Effect of adaptivity on local field methods

1.05
Through Thickness Crack in Flat Plate 11 % = )
Unifern Drack Eoce Bresture Through Thickness Crack in Flat Plate
(1) 5 ; : i P 2D Plane Strain Analysis /\/_./\,
K’f 2D Plane Strain Analysis o, J27r e
W I ;
g \Jﬂ'ﬂ —8— Bascline Mode g ~NNTd
—a&— Ix Refinement
] et e —— 8x Refinement 0.9

0.7

0.9 . 0.02 004 -~ — 1 " 0 0.0 0.04 0.06 0.08 0.1
rla
K from displacement u Kfrom stress o
 [Ew, 1 K; = lim (\f??r-r Hgg|5—[;|)
— | (H = 1) o — o
K ilﬂ}lll 1 Vr ] I' / r—0

Even element h-refinement cannot improve K values by much particularly for
stress based method
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General Recommendations

1. Crack surface meshing:
* Nodes in general should be duplicated:
e Modern FEM can easily handle duplicate nodes

* If not, small initial separation is initially introduced

L = - &> 3 L e
T T N — — :
A Small but Finite Gap Between

Crack Faces Avoids Having
Coincident Nodes

* When large strain analysis is required,
initial mesh has finite crack tip radius.
The opening should be smaller than
5-10 times smaller than CTOD. Why?
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General Recommendations

2. Quarter point vs mid point elements / Collapsed elements around the crack

tip

For LEFM singular elements triangle quarter
elements are better than normal tri/quad, and
quarter point quad elements (collapsed or not)

Perturbation of quarter point by e results in #(ge?) error in K (g = h/a)

For elastic perfectly plastic material collapsed quad elements (15t/ 2nd
order) are recommended

3 1t order 2" order

4

4
Use of crack tip singular elci entsare m% re important fot IbeaLﬂé ‘
interpolation methods (u and o). EDI J integral method is Iess sen5|t|ve to
accuracy of the solution except the 1% contour is used.
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General Recommendations

3. Shape of the mesh around a crack tip

a)

b)
C)

d)

Around the crack tip triangular singular elements are recommended
(little effect for EDI J integral method)

Use quad elements (2" order or higher) around the first contour
Element size: Enough number of elements should be used in region of
Interest: r,, o large strain zone, etc.

Use of transition elements away from the crack tip although increases
the accuracy has little effect

Spider-web mesh (rozet)
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General Recommendations

4. Method for computing K
* Energy methods such as J integral and G virtual crack extension (virtual

stiffness derivative) are more reliable

* Jintegral EDI is the most accurate and versatile method

 Least sensitive method to accuracy

of FEM solution at CT particularly if
plateau q is used

e K based on local fields is the least accurate and most sensitive to CT

solution accuracy.
* Particularly stress based method is not recommended.
* Singular/ quarter point elements are recommended for these methods

especially when K is obtained at very small r

296



6.1Fracture mechanics in Finite Element
Methods (FEM)

6.1.1. Introduction to Finite Element method

6.1.2.Singular stress finite elements

6.1.3. Extraction of K (SIF), G

6.1.4.) integral

6.1.5. Finite Element mesh design for fracture mechanics

6.1.6. Computational crack growth
6.1.7. Extended Finite Element Method (XFEM)
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What’'s wrong with FEM for crack
problems

® Element edges must conform to the crack geometry:
make such a mesh is time-consuming, especially for
3D problems.

® Remeshing as crack advances: difficult. Example:

i ; AN VAVAY .
AR e Bouchard et al. CMAME
AROCRE TR R R BT e 2003

| (1"
L_;
i
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Capturing/tracking cracks

Fixed mesh

Crack tracking

XFEM enriched
elements

Brief overview in
the next section
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Crack/void capturing by
bulk damage models

Brief overview in
continuum damage models



Fixed meshes

* Nodal release method (typically done on fixed meshes)
* Crack advances one element edge at a time by releasing FEM nodes
* Crack path is restricted by discrete geometry

* Also for cohesive elements they can be used for both extrinsic and intrinsic schemes. For
intrinsic ones, cohesive surfaces between all elements induces an artificial compliance (will
be explained later)
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Adaptive meshes

* Adaptive operations align element boundaries with crack direction

F (KN) x 10

E00y
400§

oo

O d (mm) x 10
Element splitting:

Smoother crack path by element splitting: K\

cracks split through and propagate between :
newly generated elements

F (KN) x 10

1

L1

— |

[% -]
d (mm) x 10

— Abedi:2010

T
1
|
| N
1
| \"\._\x
| ",
| .
| 3
I e &
)
ri
)
T

Cracks generated by refinement options Element edges move to desired direction
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6.1Fracture mechanics in Finite Element
Methods (FEM)

6.1.1. Introduction to Finite Element method

6.1.2.Singular stress finite elements

6.1.3. Extraction of K (SIF), G

6.1.4.) integral

6.1.5. Finite Element mesh design for fracture mechanics
6.1.6. Computational crack growth

6.1.7. Extended Finite Element Method (XFEM)
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Finite Elements for singular
crack tip solutions

* Direct incorporation of singular terms: szuk @th XN
e.g. enriched elements by Benzley
(1974), shape functions are enrlched ki
by K,, K, singular terms = (102 D) (5 -4 )+ (B 1)

« XFEM method falls into thi
(discussed later)

* Quarter point (LEFM) and Couf‘yed&n be easily used in FEM software
half point (Elastic-perfectly pkStic)

More accurate

elements: By appropriate positioning 1" ) : :

of isoparametric element nodes ol 1o A . 0 /\
. . oy 1.5 21 2 D 2 4 2

create strain singularities R ?lpy o

\ I

LEFM: ¢, 0 : —— singular

303 Elastic-perfectly plastic: € : % singular



Extended Finite Element Method
(XFEM)

Belytschko et al 1999 set of enriched nodes
u(x) = ZNI(X)UI + Z Nj(x)®(x)a;
€S ) \JES* y

enrichment part

Partition of Unity (PUM) enrichment function

SN =1 ——— 3 Ns(x)2(x) <(2(x)
J J

@(x) known characteristics of the problem (crack tip singularity, displaceme
jump etc.) into the approximate space.
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XFEM: enriched nodes

nodal support

[Nr (x) # 0]

Y N x)R(x) = B(x)
J

enriched nodes = nodes whose support is cut by the item
to be enriched

enriched node I: standard degrees of freedoms
(dofs) and additional dofs
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XFEM for LEFM

crack tip with known

displacement

K 6 6
== Lcos— kK —1-4 2sin? —
21 27 2 2

K 0 g
== Lsin— k11— 92cos® —
20\ 2m 2 2

crack edge

q ¢ = f(v/r,0)

displacement: discontinuous across
crack edge

‘I)Q : ‘I)Q($+) 75 ‘I)Q(ﬂ'}_)
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XFEM for LEFM (cont.)

u=2—; %cosi(ﬁ:—l—l—%in 5)

Crack tip enrichment functions: oK [ (1 200?)
2m 2

2

_2u

B,| = |/Tsin g}\/?cos g}\/?singsinﬁjﬁcos g sin 0

Crack édge enrichment functions:

Hx)={ t1 fx=-x")-n> 0 s¢  blue nodes
_ 1| —1 otherwise )
St red nodes
uh(x) — ZNI(X)UI
Ies
T Z Ny(x)H(x)a;
Jese
+ ) Nx(x) (Z Bab?()
307 KeSt a=1




XFEM for cohesive cracks
Wells, Sluys, 2001

No crack tip solution is known, no tip
enrichment!!!

not enriched to ensure zero
crack tip opening!!!

+1 if(x—x")-n>0

—1 otherwise
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XFEM: examples

CENAERO, M. Duflot

vt

Northwestern Univ.
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Meshfree methods

Bordas et al.

05
045
04
035
03
025
02
0.15
01
005

Elastic-plastic fracture .. Shaofan Li 2012



6.2. Traction Separation Relations (TSRs)

312



Cohesive models

® Cohesive models remove stress singularity predicted by Linear Elastic
Fracture Mechanics (LEFM)

Repulsion
Macro-crack Tip \
Potential
ner

traction-free Cohesive Zone i

Tmax
LEFM
]
\)T:D (Intrinsic) Conprssn|
J- Tma-l;( T=max (Extrinsic) E}' :Stress Scale
S5O0 ——
I’ A - :
\/_ (b) @ / 0 : Displacement scale

S5 = f:}f(_ﬂ.uﬁi) A : Length scale

Traction is related to displacement jump across fracture surface
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ions of cohesive models
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Cohesive models

e Traction Separation Relation (TSR): Relation between traction (stress)

and displacement jump Cohesive Zone i

o =af(8/d)

e Parameters of a cohesive model(Only 2 out of 3 are needed)

— Stress (traction) scale : Maximum traction in TSR

— Displacement scale 4: Separation corresponding to maximum trac-
tion (extrinsic models) or maximum nonzero traction

>

— Work of Separation ¢ Area under o — 4 curve is the work needed to
complete debond a unit surface area. This can be associated with

. in LEFM theory.

e Types of Cohesive models

— Intrinsic cohesive models:

+ It has and inmitial hardening o — d part

o (traction) q.

¥ o starts from 0
¥+ Can be inserted in FEM mesh from the start of the simulation g ) (Separation) 5
(along certain lines or between all elements)
— Extrinsic cohesive models:
¥ (Generally has only softening & — 4 behavior.
¥ o starts from maximum stress (o)

¥ Should be adaptively inserted between elements when traction
between elements approach &
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Process zone (Cohesive zone)

e Process zone Important Points and lengths

— Nominal crack tip r- Generally corresponds to the point with maximum traction (7)

— Nominal trailing edge of the process zone xy: The point where traction goes to zero (or if
asymptotically goes to zero taken when stress is arbirary small e.g., 0.01 or 0.001 sigma.

— Nominal leading edge of the process zone x1,: When general crack-like (e.g., highly nonlinear
response ) starts. Often, xp, is set to zoT.

— Process zone size A = |z, — or|: Characteristic length scale corresponding to cohesive mod-
els (L)

e Cohesive model shape

— Can have important influence on the response of cohesive model

— The shape can be based on ductile/brittle response of TSR and can make it intrinsic or extrinsic

LT A X1,
LCT

>

Y
o (traction) q

Trailing edge of cohesive zone

T 5 0 (separation) 3

O- Leading edge of cohesive zone
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Shape of TSR

¢ Cohesive model shape

— Can have important influence on the response of cohesive model

— The shape can be based on ductile/brittle response of TSR and can make it intrinsic or extrinsic

cubic polynomial trapezoidal smoothed trapezoidal
. . . . . | , | , , | . .
0.8 08
Eua 506
|r-1 -H
E‘Tt}d = 04
0.2 0.2
'Dﬂ 02 04 _ﬂ_'ﬁ 0.8 1 Un 02 04 _ufﬁ 0.8 1 ﬂﬂ 02 04 06 08 |
Iﬁ ° ﬂ ° e e & °
exponential linear softening bilinear softening
1 1 | | | | | : | | | |
EM Eus ﬁns
£ 06 £0s £ 06
l-::l Ia--. IJ---_
& 04 IE{]TM .:“%[l--i
0.2 0.2 0.2
o 2 i 4 5 6 % o2 04 06 08 1 02 04 06 08 1

=1
L=
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Cohesive model Table

Source: Namas Chandra, Theoretical and Computational Aspects of Cohesive Zone Modeling, Department of

Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University

Year and author Proposed Model Model parameters Problem solved | Model constants| Comments
£ kOO T e
1959, 1962 | mF T Brittle materials First to propose
Barenblatt, G.I. _ ET rittle) the concept
-V T=T 4T Y12
b [ I . .
¥ T, =wark of separation for brit. mat
T, =work of plastic deformation
[43 * [}
1960 | | i-2 sin’ (& stk zons Cohesive stress
Dugdale oy ot SN Steel sheets equated to
- o For small valu?e of T/Y ranges from vield stress of
=2 = s T 0.042 to material
AY = =123 = 0.448 (in)
2 Ly T
t Py
Polymomial fit + Linear fit = wk. of Sep. §=10" 10103
I o T 4 by = o osF P article-m atrix - - Phenomenological
1987 8 = normalizing Par : C ohesive Energy
Needlem an - ' déioakieston 1to10 Jfm2 ool
- o__ = M ax . Stress predjct norraal
u O e = 100MPa ke varation
2
Model basedony g _1nit Voung's mod . Ascending part
1080 atom1glﬁt c)uf the h = normalizing Par. Solute segregation is equatedto E
Rice & Wan fype (1+x)e™ - :
g O .. = Max. Stress Nornmal separation.
i o, = COns tant(% =2v) Ignores shear
- separation
T &° > .y Exponential fif
, olmomBl ¢ Tn Lineat ¢ =wk. of Sep. ' ;
1990 ponential fit for Ts = 5 P article-matrix 8- 10° 4
Needleman ’ § = normalizing Par. decohesion vl ol (e predict normal
- m -t o, = Max. Stress separation
fl/a
Exponential fit for normal Tn o
1000 Trignometric fit for shear Ts ¢, =wk. of Nor. Sep. ' 6,=06,= Periodic sheat
Needlem an  =wk. of Shr. Sep. Decohesion of | 10"™o2x10%m |traction to model
/ \ / w | & .8 = critical displacemernts interface under Pieriels shear
- — : Tt My Sty | ‘hydrostatic T/p,=0.57 —2.59 Ioress due to slip
L U, K/‘D O pan, = ax. eSS -, o ,fUn - 2’3

240
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Cohesive model Table

Source: Namas Chandra, Theoretical and Computational Aspects of Cohesive Zone Modeling, Department of

Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University

Year and author Proposed Model Model param eters Problem solved model constants |[Comments
aln =0-10 i
e ' =wk of Separation. Crack growth in T ' Salus
y s 7, . (C =Plwk),g fge =1| shapeof
1992 : : 8°,6¢ = critical displ. elasto-plastic ST se paration
Tvergaard & : % : o = Peak nor. trn fint. face str. | material, U(‘UY - law are
Hutchinson : 0 : A, A, = factors governing peeling of Py Ay = 0.15,0.5 relative ly
; '1 1 .;‘ shape of sep adhesive joints D‘y/E =1/300 -~ -
Exponential fit for both Tnoand Tt _wk of Nor. &
1593 . ¢n:wk'of3hr 'S:p' 5.5 = Predicts
Xu & Needleman i S Il NED: Particle-matrix 25100 2x10 " m shear and
Tn |/ o urey 5.6, = cntical displacements! 5.0y ecion e —
. 2 v o =Mazx Stress ti
A A _M T max separation
A+ 1+ N =5 = 2
Tn 2 6.8, = critical displacements. Interfaces of Ol m = 1AL ITI ikt
T 5. = Max. Stress Whlsker-re{nforc ed| E=60GPa(Y oung's mod) Sias
Tvergaard e tal m.atnx cy/E = 0.005
cor posites o /Gy — G
O, +Ty= Nor. and Shr stress A Tumina: Predicts failure by
at fracture initiation Ira pact . both shearand
£7= 400 MPa
1996

Camacho and Ortiz

8 gexsO,cx = Crit. nor.opening
and shr. opening displ.

G, =Fracture energy

5, =17x107m

Steel:
oy = 1500 A0 P

5. =27x10%m

normal separation

in tension and by

shear separation
In corapression

1997
Gaubelle &
Bayler

Py, P, Work of normaland
tangential separation

by, Ay Normaland Tangential
displacement jump

5?2, 5: . Nommal and tangential
mterface characteristic-

length

delamination by
low-wvelocity
Irapact

T = Ef0

Critical normal

displaceraent jurap

A =10%10%m

Bilinear model
A scending curve
can be matched
to initial
stiffness of the
raaterial

210
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[~

-,_‘“

Scales of cohesive model

Energy 2 out of the three are independent

g0
% :
PO = — Linear momentum
Cd
v % % .
S —— Strain
ca  peg €
I, |
— = — Velocity
T PCd
pc2o
Cfd"f: — _,fl X 4-""1{"} Length Process zone size A
o
pPCq0
5 Time |Influences time step for time
marching methods
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Why process zone size is important?

e Importance of process zone size A

rm A

— Static estimate:

1l — v a*

Dugdale model

1‘—13 Potential-based TSHs g
— Minimum number of elements in process zone size:
There should be at least 4-10 elements along the PZ
— Dynamic estimate: PZS decreases as crack speed 1 approaches Rayleigh wave speed ep
-~ "':1 o ~
Alt) = ——, A(i)—=0ast —werp =
Lo _.4 {1.1::' : A 1 |
Smaller elements are needed in PZT as crack accelerates!
0.8
0.6
=
~
N [
= o04f
_ log o’
F——1/2
0.2_—_—]
[ — _3/2
[]: —— steady state
0 0.2 04 0.6 0.8
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When LEFM results match cohesive solutions?

e When 5S5Y condition is satisfied LEFM and Cohesive Fracture \

Mechanics (CFM) solutions are expected to be close =

e When 7' = = — 0 LEFM & CFM are expected give similar results X

crack speed

|~

5_
A
|

) initial crack tip 9

STk o

process zone size

11—
1_
- 0.8
0.8+
_ o6l [_ll".‘.' ' — _:_:_ =S 0.67
= QQy ~
0-4_ '-'I--.‘I[ ‘<: 0-4_
LEFM = CFM o
F] a1 o = I —_—_1/2
0.2 0.2f — -1
—_3/2
steady state
0 ' 0 . . . \
0 2 4 10 0 0.2 0.4 0.6 0.8 1
+ al
1 — —
1 | T
0.8 o
0.8f N, DR IR | I
High o' = = |
l.._;l r L
- 08] [-'"_1"_ R _ 06
3 LEFM # CFM = log o’
0.4} = g4l —-1/128
[ —— —1/64
[ ——1/32
0.21 0.2f ——1/16
L ——1/8
0 I —steady state
0 O 1 1 1 1
322 0 0.2 0.4 0.6 0.8
# a!




Fracture toughness (I'): LEFM: Energy needed to create one unit surface of crack

Resistance (fracture toughness) versus work of

separation

* Work of separation (¢): CFM: Energy needed to entirely debond a point in time per area
(following a traction-separation-relation)
* Relation between ¢ and G:

6=

I'

0
ot

() 6 O
/ :(5]‘ )—}‘ d.l' —+ / :((SL ) cldk
_“'l k) 2 0

e Dynamic part () goes to zero when:

~

Qi) TH

o 5 k

i 7 (1 —v)oA ) (0)5 k) | O
* Steady state crack propagation (crack speed does not ! e
change).
* When the crack speed tends to Rayleigh wave speed (cg)
1.4; _ 1.4
| : : High o’ = £
! LEFM CFM 1.2} LSY
| - : ; LEFM # CFM
. - - | comparison: 1
;\J 08_ [_I IS lTI. e _ Set F - (I) ;_J 08"
S . T I accurate except = |
S o6 55% ] P S 0.6}
04l LEFM = CFM  1og 5 | Unsteady /low z
) __., | crackspeedORif =
o2 —!, | SSYisnotsatisfied 0.2}
OO /P 110 P SR, 210 PSR 310 s .410 e a 50 O.
t/T
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Artificial compliance for intrinsic cohesive models

¢ Artificial compliance becomes important if cohesive surfaces are added between A
all elements for intrinsic models to find crack propagation path. g
o~
e The artifical compliance is computed as, g
.:El
A = A.+ A, A, = elastic displacement, A. = cohesive separation = %
T T a s
h == _.|:|I -I_ —_— ;k" ~+~
Eog E i ~—
1 L, S
- T T, = : >
Eeg E ~ Kh 5 ) (separation)
Cohesive surfaces
Artificial compliance is,
1 ' 1 !
i)
Ce = — = — = —, where
Kh ah E. /
. dh . /
E. = Kh = —, and effective elastic modulus is /
1 | ] EFE. /
= —= 4+ —. = F = — —
Eg E E. T ETE.
e That is the smaller element spacing i or softer the initial slope K of TSR the / / h
higher artificial compliance (higher errors) S
e While extrinsic cohesive models do not have the same problem, adaptive in-
sertion of cohesive surfaces is more challenging for them.
h AcA.
o -] — O
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4.3 Mixed mode fracture

4.3.1 Crack propagation criteria
a) Maximum Circumferential Tensile Stress
b) Maximum Energy Release Rate
c) Minimum Strain Energy Density

4.3.2 Crack Nucleation criteria
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Motivation: Mixed mode crack

propagation criteria
ot |
 Pure Mode | fracture: — | «
JE:‘J{:I = JE:‘;:If:

* Mixed mode fracture (in-plane)
- = ,7 K, &K,

F (K1, K, Kye) =0 | -L

* Note the similarity with yield surface plasticity model:

- ' _ (o1 = 09)? + (093 — 03)% + (73 — 01)
Fyid(ﬂ'lgﬂfj,ﬂ'yj — [] Oy = Oy for g,“_..v. _

Example: von Mises yield criterion
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Motivation: Experiment verification of the
mixed-mode failure criterion

Ky tksiVin )

a circle in
I [K? + K2, = K},’CJ

. KI, KIl plane

T
™

L0

30

K. DTD 5050

A —

0 o Plone siramn

10 r

K
{E} i lnt‘ i i 1 g '«

i [
10 20 30 40 SO €0 70 80

—_— K (ki n ]

Data points do not fall exactly on the circle. —
Ki\* (Kir\° .
(Kr ) N (KII ) — 1 self-similar growth o (st DK}
Ie Ic 327 o 8#




Mixed-mode crack growth

Combination of mode-I, mode-Il and mode-Ill loadings:
mixed-mode loading.

Cracks will generally propagate along a curved
surface as the crack seeks out its path of least
resistance.

Only a 2D mixed-mode loading (mode-l and mode-Il)
is discussed.
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4.3 Mixed mode fracture

4.3.1 Crack propagation criteria
a) Maximum Circumferential Tensile Stress
b) Maximum Energy Release Rate
c) Minimum Strain Energy Density

4.3.2 Crack Nucleation criteria
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Maximum circumferential stress
criterion

Erdogan and Sih

the direction of propagation
IS given by the angle 93 for which

(from M. Jirasek)

maximum circumferential stress criterion
(maximum hoop stress criterion):

crack propagates in the direction
perpendicular to the

maximum circumferential stress
(evaluated on a circle of a small diameter
centered at the tip)

o,(r,0.)= max o,(r,0)

—n<l<1w

principal stress > [ﬂ-e = 0]
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Maximum circumferential stress
criterion

Or = Ki (gcosg-lcusa—a-)+ K (—ésing+3sinﬂ)
" V2nr \4 2 4 2 V27T

(7.35b)

Y Isinﬂ+lsin39 +KH lmsa+3cos36
= e & 2T ) T Ay \d 2T )

(7.35¢)

v v 0 0
Tro :O —_— KI(SiIli—I-SiD%)—I-KI[(COS§—I—3COS3?):0

1
—_— QCZQ&rCtaDZ(KI/KII:E(K[/KII)Q—I—S)




Maximum circumferential stress
criterion

o,(r,0.)= max o,(r,0)

0-5* -
E\ Trﬁ'/i —T<f<x
20

i r &\
E _,”I J}f"\ ..r“\:’
E ;;*r# 1 Trﬁ' o
.,gxll _____________ ti.. [Trﬁ — j -
LG 1K 1 |/ K1 \? s
All — — — I — — >
o> ~ 4Ky a4\ \Kq

Maximum allowable traction og,,,,, 1s reached at
angle # = #maxr and distance from crack tip rg:

— i V) i v 3. .
Ugmﬂrxfﬂrrrb: Ki. = cos ?D [fil cos? ?D — 51’111 Sin ﬁg]

e il
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Maximum circumferential stress
criterion

Fracture criterion K., > K,
K Gq ( 9 9;}) Kir ( 3 o 3 . 306 )
oy = cos — [ 1 —sin + ——8in — — —sin — 7.9
T V2 2 2) " \Vorr\ 4 2 4 2 (7.9)
must reach a critical value which is obtained by rearranging the previous equation
HD 9 ED 3 :
TomazV 2mT = Kj. = cos > [I{I COS 5 2K11 sin HD] (7.10)

which can be normalized as

;i cos' %ﬂ — g;’ii cos %ﬂ sinflg = 1 (7.11)

11 This equation can be used to define an equivalent stress intensity factor K., for mixed mode
problems

K, = Kjcos % — gKI] COS H—; sin fy (7.12)
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Experiment

L.25
-

- - '-2'.-__-'.._
A
S
=
. 5

777 9 : ‘ 1
- -
10 10
- - - -

XFEM

.

Bc = 23.1'013&11% (KI/KII + \/(KI/KII)Z —I—S)
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Modifications to maximum
circumferential stress criterion

e Effective traction can be defined as a function of both normal o, and tangential
rrfl components of traction. For example:

/

b PR
Toff = 1',-". If]"['J — X Tt | =

combines normal and tangential components through mode mixity parameter o,

e Crack propagation direction #. can be based on maximizing effective traction:

Teff (7, 0:) = MAX_ ¢ coenTam(r, )

e For example, in soil and rock applications normal tractions can be compressive for
cracks that propagate under high shear tractions.

s 6,
; #;\’} Trﬁ'//;
| |

i P # ‘h Trﬁ' \qo-

5 "6 ?
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4.3 Mixed mode fracture

4.3.1 Crack propagation criteria
a) Maximum Circumferential Tensile Stress
b) Maximum Energy Release Rate
c) Minimum Strain Energy Density

4.3.2 Crack Nucleation criteria
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Maximum Energy Release Rate

g/ﬁ

A—
e A —— - an - ——n /
| —————

(d)

r | S l (c)

G: crack driving force -> crack will grow in the
direction that G is maximum

‘Erdogan, F. and Sih, G.C. 1963

“If we accept Griffith (energy) theory as the valid criteria which explains crack
growth, then the crack will grow in the direction along which the elastic energy
release per unit crack extension will be maximum and the crack will start to grow
when this energy reaches a critical value (or G = G(4, #)). Evaluation of G(4, )

poses Insurmountable mathematical difficulties.”

337



Maximum Energy Release Rate

B — K, K,

F

B K, 180, K, 18)

Stress intensity factors for kinked crack extension:
Hussain, Pu and Underwood (Hussain et al. 1974)

i ™ i i k'
] Ki(0) ::( 4 ) 1-£ 7 | Krcos+ 5Krsin®
- K11(9) 34+cos20)\ 142 | Kircost — 5Kysind

w

F .

G(0) = - (KX0) + K3,(0))

8
o) — 4( 1 )? 1—2\~
A9) = E’" \ 3 + cos? 6 ‘_|_|_%

(1 + 3cos? 0)K? + 8sinfcos 0K K1 + (9—5 cos’ 8)&%]
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Maximum Energy Release Rate

KI I}:II
Maximization condition M — 0
06 %/
o 2 _'f 5
0 (‘TG) < 0 B 2k, K, 0
062
. 1 1 2(1-8\*
G) = E' (34—(:0596‘) (14_%)
(1 +3cos*0)K} 4 8sinf cos 0K Ky + (9 — 5cos” 0) K]
3 + cos? 6y 14 %
: Ky \2 ) KiKp ~ K\ ? |
0 2 ) ) e 2 _
(1 + 3 cos ﬂg) (K]c) + 8 s1n fg cos fy ( 17{1%3 ) + (9 H cos SD) (K[c) 1
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4.3 Mixed mode fracture

4.3.1 Crack propagation criteria
a) Maximum Circumferential Tensile Stress
b) Maximum Energy Release Rate
c) Minimum Strain Energy Density

4.3.2 Crack Nucleation criteria
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Strain Energy Density (SED)

criterion >ih 1973

_ [ 1 [k+1 , 2 2y

U, = /0 o',,;jdeij U, = E _ 1 (O'm + a'y) — Q(Jmcry — my)_
K 6 (1 o 9) Kn 6 ) 6 36

Tz m COS E — sin E sin E 7 E + COS E COS ?
K 6 Y 36 Kn ¢ 6 36

Ty mmsi (1 smis ?) msmimsiwsf (7.13)

K; o 6 K v

I 6 , 30
Ty — COS — SIn — COS — cosS — |1 —sin — sin — |} .
=y 27T 2 2 2+v2r 2( 2 2)

SZTUi
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Strain Energy Density (SED)

criterion

e Crack direction fy which minimizes the strain energy density S

e Crack Extends when S reaches a critical value at a distance rq

o))
Minimization condition 2li,
048
Pure mode | (O degree has smallest S) 062
f_t:J
e
[/ ==
— _—_=—‘ : - |DJ| - dilatiol
.\_Bﬁj yielding
_fj distortion

-
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Strain Energy Density (SED)
criterion

ayy = 1+ cosf)(k — cosf)]
ajg = bll:jj 2cos — (kK —1)]
1
ax = J4- (k+1)(1 —cosf)+ (1+cosf)(3cost —1)]
0
K= i:’: (plane stress)

k= 3 —4v (plane strain)
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Comparison:
a) Crack Extension angle

Angle of Crack Propagation Under Mixed Mode Loading

80 — — — = 60
(
70 = e ____ -7 T
I T 1N —1 1 / 50 o S s
I-_|_.- - ) ,_,.-““r ‘\\ . L1 - ___-""-._ .....
60 o . o e
A P " ;#___d_.
J 40 =

50 A - i
31 | I.' — \ Ef £ ¥ - _—
s 40 NE — g \ s 30 F A S ra
* I'1- - GI:_.m T , / _ G‘;—r

30 |-+ = VA o

z / 4/ /
20 .J. r.
\ f
' 10 o
ol \\ 7
i
U \ W |
o 1 2 3 4 5 & 7 9 10 00 0102 03 04 05 06 07 08 09 10

K IK.

~ 70 degree angle for mode Il |

Kol

Zoom view (low K, component)

Good agreement for low K;
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Comparison:
b) Locus of crack propagation

1.0 e—————
N > Least conservative
08 ~]_ | S //
R o -.:.T-'-."'“ﬂx: . - N //
Most conservative <15 ——
{F‘ HMH o \\‘
v ”\M\
— 0. . k
04 — e —
\ -I.. Yo
0.2 \\
\V
5
0.0
0.0 0.2 04 0.6 0.8 1.0
K'IIKIG
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Mixed mode criteria:
Observations

First crack extension O, is obtained followed by on whether crack extends in 0, direction
or not.

Strain Energy Density (SED) and Maximum Circumferential Tensile Stress require an r,
but the final crack propagation locus is independent of r,,.

SED theory depends on Poisson ratio v.

All three theories give identical results for small ratios of K,,/K, and diverge slightly as
this ratio increases

Crack will always extend in the direction which attempts to minimize K, /K,.

For practical purposes during crack propagation all three theories yield very similar
paths as from 4 and 5 cracks extend mostly in mode | where the there is a better
agreement between different criteria
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Implication on close to mode | crack
propagation

Criterion of local symmetry

When cracks grow in non-uniform stress fields, the path of the fracture is generally curved. The
path taken by a crack in brittle homogeneous isotropic material can be assumed to be one for
which the local stress field at the tip is of a Mode | type*:

K; =0 at the tip

*Cotterell, Brian, and JRf Rice. "Slightly curved or kinked cracks." International journal of fracture 16.2 (1980): 155-169

[1] N.V. Banichuk, "Determination of the Form of a Curvilinear Crack by Small Parameter Technique" Izv. An SSR, MTT 7, 2 (1970) 130-7 (in Russian).
[2] R.V. Goldstein and R.L. Salganik, "Plane Problem of Curvilinear Cracks in an Elastic Solid", Izv. An SSR, MIT 7, 3 (1970) 69-82 (in Russian).
[3] R.V. Goldstein and R.L. Salganik, International Journal of Fracture 10 (1974) 507-23.

[f K;;# 0 at the crack tip, the crack would abruptly change its
direction; the crack path would exhibit a kink at this position,
and hence it would not be smooth [21]. By driving a curved
crack straightly in the tangent direction at the crack tip the
local symmetry (2) will be broken (Ky;#0). The change of
Ky(s) along a straight extension s in the tangent direction
determines the curvature C of the crack path according to

Amestoy and Leblond [see Eq. (104) in Ref. [25]]

2 | dKyl(s)
2]
K I ds straight

Van-Bac Pham,Hans-Achim Bahr,Ute Bahr,Herbert Balke, Hans-Jirgen Weiss, Global bifurcation criterion for oscillatory crack path
instability, PHYSICAL REVIEW E 77, 066114 (2008)

[21] B. Cotterell and J. R. Rice, Int. J. Fract. 16, 155 (1980)

[25] M. Amestoy and J. B. Leblond, Int. J. Solids Struct. 29, 465 (1992)
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Example of critical local symmetry

Cold bath Gap Oven

f
[

I' Slab velocity U

\ 6.2 (1980): 155-169

FIG. 1. Experiment by Yuse and Sano [1].

Van-Bac Pham,Hans-Achim Bahr,Ute Bahr,Herbert Balke, Hans-Jirgen Weiss, Global bifurcation criterion for oscillatory crack path
instability, PHYSICAL REVIEW E 77, 066114 (2008)
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4.3 Mixed mode fracture

4.3.1 Crack propagation criteria
a) Maximum Circumferential Tensile Stress
b) Maximum Energy Release Rate
c) Minimum Strain Energy Density

4.3.2 Crack Nucleation criteria
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Crack nucleation criterion

¢ Cracks mucleate from microscopic material defects under high stress/ strain loads.

e For each crack propagation criterion there can be a corresponding nucleation criterion.

e For example for maximum circumferential tensile stress, a crack mucleates when the maximum
principle stress o1 at a point reaches material strength oq:

max_; gon0g(r =+ 07, 8) =y = oy, crack nucleates

Although we assume that there is no initial crack tip, we can measure r relative to the potential
micleation point,

e Same concept applies to modified maximum circumferential tensile stress criteria:

MAX_ ;o genTeg(r — 07, #) = ap, crack nucleates
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Crack nucleation criterion

e For Maximum Energy Release RHate Criterion if we assume there are no defects, there will be
no crack nucleation. However, assuming that local stress field generates a tensile maximum
principal stress of o1 a “microscopic” initial crack (defect) of length ai,; perpendicular to oy
direction generates,

-9 -9
o — Ki + Ky .
T = Er — Atgmt ]

so the microcrack propagates (i.e., a "macroscopic” crack nucleates) when,
[ G

G=0G S g1 =4/
‘ 1|I'II Tin;

— Initial crack direction perpendicular to oy is chosen to maximize .

— We have assumed the initial crack to be small enough to use the infinite domain SIF formula
of Ky = ,/mas.
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8. Fatigue

3.1. Fatigue regimes

3.2. S5-N, P-S-N curves

8.3. Fatigue crack growth models (Paris law)
- Fatigue life prediction

8.4. Variable and random load
- Crack retardation due to overload
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Fatigue examples

Key Idea: Fluctuating loads are more dangerous than monotonic
loads.

Example: Comet Airliner (case study). The actual cabin pressure
differential when the plane was in flight was ~ 8.5 pounds per

square inch (psi). The design pressure was =~ 20 psi (a factor of
safety greater than 2). Thought to be safe! However, crack growth
due to cyclic loading caused catastrophic failure of the aircrart.

(source Course presentation S. Suresh MIT)
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Fatigue fracture is prevalent!

e Deliberately applied load reversals (e.g. rotating systems)
e Vibrations (machine parts)

* Repeated pressurization and depressurization (airplanes)
 Thermal cycling (switching off electronic devices)

 Random forces (ships, vehicles, planes)
(source: Schreurs fracture notes 2012)

Fatigue occurs always and everywhere and is a major
source of mechanical failure
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Fatigue

® Fatigue occurs when a material is subjected to repeated loading and unloading (cyclic
loading).

® Under cyclic loadings, materials can fail (due to fatigue) at stress levels well below their yield
strength or crack propagation limit-> fatigue failure.

® ASTM defines fatigue life, Ny, as the number of stress cycles of a specified character that a
specimen sustains before failure of a specified nature occurs.

blunting l RS =
D:._:' I

o [\:Oa/\ ﬂ A._Hm“ Iﬂur
' AvAvEvAWEE

ln:ding* '_"‘_’*_‘,,---JI time
. — P K /K"““
resharpening . -3 N\* I
i) — /\7\ ~¥ 7
(a) (b) time
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http://en.wikipedia.org/wiki/ASTM_International
http://en.wikipedia.org/wiki/Structural_failure

e striations

Fatigue crack growth:
Microcrack formation in accumulated slip
bands due to repeated loading

-

Fatig

fatigue crack

Fracture surface of a 2024-T3 aluminum alloy
(source S. Suresh MIT)

Striation caused by individual microscale
crack advance incidents
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Fatigue Regimes

Table 7.1 Classification of fatigue damage

Failure cycles  Pertinent Strain ratio Energy ratio
Fatigue Np stress AeP [ Ae® AWP | AWE
Very high cycle fatigue = 107 < TR 3 22 ()
High cycle fatigue 107 to 10° <ay 22 ()
Low cycle fatigue 10 to 107 oytoop | to 10 | to 10
Very low cycle fatigue 1 to 20 o) 10 to 100 10 to 100

Source: Dufailly and Lemaitre (1995)

* Very high cycle and high cycle fatigue:

Stresses are well below yield/ultimate strength. v

There is almost no plastic deformation (in terms of strain and energy ratios)
Fatigue models based on LEFM theory (e.g. SIF K) are applicable.

Stress-life approaches are used (stress-centered criteria)

* Low cycle and very low cycle fatigue:

Stresses are in the order of yield/ultimate strength.

There is considerable plastic deformation. <
Fatigue models based on PFM theory (e.g. J integral) are applicable.
Strain-life approaches are used (strain-centered criteria)
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Cyclic loadings

Fully Reversed Loading Tension-Tension with Applied Stress

- ~
Ao = Omax — Omin

Oq — 0-5(0max — Jmin)

Om — 0-5(Urﬂax + Jmin)
O min . Random or Spectrum Loading
R = load ratio
O max
N Y
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Cyclic vs. static loadings

® Static: Until K reaches K¢, crack will not grow

® Cyclic: K applied can be well below K, crack still
grows!!!

® 1961, Paris Erdogan used the theory of LEFM to
explain fatigue cracking successfully.

® Methodology: experiments first, then empirical
equations are proposed.

359



@
S
5)
=
o
X
3]
o
&

Cycles N

1. Initially, crack growth rate is small
2. Crack growth rate increases rapidly when a is large
3. Crack growth rate increases as the applied stress increases
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Stress (S)

S-N curve

Reminder: ASTM defines fatigue life, Ny, as the number of stress cycles of a specified character
that a specimen sustains before failure of a specified nature occurs.

*Stress->Nf
*Nf—>a|lowab|e S

1045 Steel

2014-T6 Aluminum

scatter!!!

10°

10¢

108 108 107 108 109
Cycles to Failure (N)

loading amplitude, S

S-N curve

X Experimental data
Curve through the data points to
guide the eye.

EL

1/4
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cycle-to-fracture, N,

endurance limit (g.han keo dai)


http://en.wikipedia.org/wiki/ASTM_International
http://en.wikipedia.org/wiki/Structural_failure

S-N-P curve: scatter effects
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Effect of mean stress

5 2 A« 05 02 0
-0.67 033 R=0 033 06 10
A - .
O mean | Re -1
| ~
o, Omean 2 g 000 b
g %&b & AISI 4340
3 oo} % s : - 1014 MPa -
3 RT, 2000 cpm
S l Unnotched
m'- v— — NOICHOO “
Omean 3 > Omean 2 > Omean | R L & L A'l. i Pi R A
-1000 -800 -600 - - . 600 800 10000 1200 1400
Minemum stress MPa
Approach 1: g =San
Y 1 O e
Approach 2: ca=s 1 1_[%] Master diagram
. a T _
Correction-factor formulas oy 4=Ca _1-R
oy 1+R

where &, is the amplitude of allowable stress (alternating stress).

o £ is the stress at fatigue fracture when the material under zero mean stress cycled loading

&, is the mean stress of the actual loading. Other correction factor

Gerber (1874) Ja _ g _ (J—m)z
&, is the tensile strength of the material. Ta 7
Goodman (1899) Ja _q_Im
r = 1 is called Goodman line which is close to the results of notched specimens. J‘: Ou
r = 2 is the Gerber parabola which better represents ductile metals. Soderberg (1939) ? =1- j—”;
VO @ Y



Constant variable cyclic load
SSY

R = Kmin/Kmax

AK = Kma.x — Kmin

crack growth rate

AK = Knax — Kmin = Kmax (1 — R)

364
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Crack growth data

K = o+v/ma

D @

(b) (c)
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Paris’ law (fatigue)

:..,.\m Paris’law | 2<m <7

In

da i B
[ﬁ T O(AK) ’ @K — Kma.x Kmmj

Threshold

(Power law relationship for fatigue crack
growth in region Il)

Fatigue crack growth behavior N: number of load cycles
in metals

base 10 logarithm

@ Paris’ law is the most popular fatigue crack growth model

Paris' law can be used to quantify the residual life

(in terms of load cycles) of a specimen given a particular crack size.

AK < AKip : no crack growth

. 10—8 1
(dormant period) - mm/cycle



Fatigue crack growth stages

liy-#
] -
B
LT -
o 0 =
£ .
= -
=
£ M
S .fj
= | mm/hour =
=] —
L) z
B i r
4
)
| mm/day :
| ek
1§

log AK

(source Course presentation S. Suresh MIT)
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Fatigue crack growth stages

Hegime A B @
Terminology Slow-growth rate Mig-growth rate High-growth rate
(near-thresho'q) (Pans rogimo)
Stage |, single shear Stage |, (stnations) Additional static modes
guplex sip
Faceted or serraied Planarwith rippies  Additicnal cleavage cr
MICrovoId coalescencs
LOwW
Small Large
Small Large
; Small
Large Large
'r'f? > (t(j ‘r('. >> ‘1”

I certain combinations of environment, load ratio and frequency

asiic zone size and the grain size, respectively

(source Course presentation S. Suresh MIT)
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C,m

Paris’ law

not depends on load ratio R

-

~N

are material properties that must be
determined experimentally from a log(delta

da
E — C(AK)m, AK — Kma.x — Kmin
1\ /
Table 1: Numerical parameters in the Paris equation.
alloy m A
Steel 3 10~
Aluminum | 3 1012
Nickel 3.3 | 4 x 10712
Titanium | 5 10~
m
2-4 metals
4-100 ceramics/ polymers

K)-log(da/dN) plot.
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Other fatigue models

Forman’s model (stage Il-lIl) Paris’ model
(da  C(AK)" da m
dN ~ (1-R)K.- AK iy = CAK)
/ R — Kmin/Kma}{
Kmax — Kmin dﬁ
Kc — Kma}c — Kmm - =
Kmax ( ) Kmax K dN — OC
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Crack closure

- At low loads, the compliance of
cracked specimens are close to that
of un-cracked specimens.

- Contact of crack faces:
crack closure

- Fatigue crack growth occurs only
when crack is fully open.

ffsuliTeif = Kmax "'-lircup
Kop: opening SIF

(da m\
AN CAK g

J
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Tension/compression cyclic

loads
R — O min <0
Omax
9 _ C(AK)™, AK = Koy — K
dN _ ’ — max /Al
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Fatigue life calculation

When we are in regime B (Paris regime) the following calculation

can be carried out to determine the number of cycles 1o failure.
From the Paris Law:

da | e
-=C (AK)
d /N
A K can be expressed in terms of Ao

AK =Y Aoy/ma

Where Y depends the specific specimen geometry.

(source Course presentation S. Suresh MIT)
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Fatigue life calculation

Thus the Paris |_.aw becomes:

da

dIN

— % (Y Ao/ 7ra) i

Assume that Y 1s a constant. Solve for da and integrate both
sides:

(source Course presentation S. Suresh MIT)
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Fatigue life calculation

2

1

(m — 2)CY™ (Ag)™ n™/2

For m = 2:

(source Course presentation S. Suresh MIT)
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Fatigue life calculation:
Initial crack length a,

In these expressions, we need to determine the initial crac
length ap and the final crack length a¢ (sometimes called the
critical crack length).

How do we determine the initial crack length ag?

Cracks can be detected using a variety of techniques, ranging

from simple visual inspection to more sophisticated techniques
based on ultrasonics or x-rays. If no cracks are detectable by our
iInspection, we must assume that a crack just at the resolution of
our detection system exists.

(source Course presentation S. Suresh MIT)
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Nondestructive testing (NDT)

Nondestructive Evaluation (NDE), nondestructive Inspection (NDI)

NDT is a wide group of analysis techniques used in science and industry to
evaluate the properties of a material, component or system without causing
damage

NDT: provides input (e.g. crack size) to fracture analysis

safety factor s a — Cntical Flaw Size e
K(a’: J) — Kc — Ae— > ag * S FLAW Predicted | Actual
Flaw Flaw
SIZE Growth Growth
NDT —> a,,:, a¢ - Tolerable Flaw Size _

h

t: ao, —a¢ (Paris)

Assumed Initial Flau:'_

do _— —

" . - TIME
—> Inspection time
377 (&} Determination of first inspection interval, 1.




Fatigue life calculation:
Final crack length a;

How do we determine the final crack length a, ? We know that
eventually the crack can grow to a length at which the material
fails immediately, 1.e.

>
R Y1ax =7 k C

Yo-mn.x’ W@f = Kc

(source Course presentation S. Suresh MIT)
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Fatigue life calculation:
Crack-tolerant design

Thus we may solve for a s as follows:

A very important idea that comes from this analysis is the
following: even If a component has a detectable crack, it need not
pbe removed from service! Using this framework, the remaining life
can be assessed. The component can remain In service provided
1 I1s Inspected periodically. This is the crack-tolerant or damage
tolerant design approach.

(source Course presentation S. Suresh MIT)
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Fatigue life calculation:

Example
® Given: Griffith crack,  2ag,Ac,C,m, K1, No

® Question: compute N, K = ov/Ta

da B da
C(AK)™ C(Aoy/ma)™

analytical dN =

Integration .
N— N -I-/ ! da
0 oy ClAoy/ma)™
m =4
1 “f da 1 1 1
N = Nyg A — = Nog
T C(Ao)in? oy a2 T O(Ao)in? ( )

measurement Koax = Omax/Tar = Kj,
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Numerical integration of
fatigue law

NN _I_/'“'f da .
= N  C(Bof(a/W)ma)m tedious to compute

set Ao, AN, a.
initialize N =0, a = ag

while a < a,

AK = B Ao/ *xa

da - da .
i =Cx(AK)" — Aa= dN*ﬂh
a=a-+ Aa

N =N+ AN

end
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Importance of
initial crack length

C=456e-11;m=29 ;DN =100

N [c] P
aluminum ; o = 50 [MPa]



Fatigue design philosophies:
Safe-life approach

e Determine typical service spectra.

e Estimate useful fatigue life based on laboratory tests or
analyses.

e Add factor of safety.

e At the end of the expected life, the component is retired from
service, even if no fallure has occurred and the component has

considerable residual life.
e Emphasis on prevention of crack initiation.

e Approach is theoretical in nature.

(source Course presentation S. Suresh MIT)
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Fatigue design philosophies:
Fail-safe approach

e Even If an individual member of a component fails, there should
oe sufficient structural integrity to operate safely.

e Multiple load paths and crack arresters.
e Mandates periodic inspection.
e Accent on crack growth rather than crack initiation.

(source Course presentation S. Suresh MIT)
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Fatigue design philosophies:
Case study

F-100 gas turbine engines in F-15 and F-16 fighter aircraft for
U.S. Airforce.

Old Approach:

e 1000 disks could be retired from service when, statistically, only
one disk had a fatigue crack (a < 0.75 mm).

New, RFC Approach (since 1986):

e Retirement of a component occurs when the unique fatigue life
of that particular component is expended.

e Retirement only when there Is reason for removal (e.g. crack).

(source Course presentation S. Suresh MIT)
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Fatigue design philosophies:
Case study

e Iwin engine F-15 and single engine ~-16
e 3200 engines in the operational inventory of U.S. Air Force
e 23 components of the engine are managed under RFC

e 1986-2005 life cycle cost savings: $1,000,000,000
e Additional labor and fuel costs: $655,000,000

(source Course presentation S. Suresh MIT)
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Miner’s rule for variable load amplitudes

1945
Shortcomings:

a

! 1. sequence effect not considered

Ao
Ao ﬂ | \ 1 2. damage accumulation is
AAAAAN ( \ independent of stress level
|'|||||||I|"||'I| A0-2 | |
VYV | ||

| | U ! U\JMPF
Ni a1 \/ \// :

Ny ¢ Ni/Nif : damage

Y D N;  number of cycles ao to a;
(2

—1 |

Z N; ¢ Ao, N;; number of cycles ao to ac
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Influence of sequence of loading

The component Is assumed 1o fail when the total damage
becomes equal to 1, or

It Is assumed that the sequence in which the loads are applied
nas no influence on the litetime of the component. In fact, the
sequence of loads can have a large influence on the lifetime of

the component.

(source Course presentation Hanlon, S. Suresh MIT)
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Influence of sequence of loading

Consider a sequence of two different cyclic loads, o,1 and o,2.
Let o,1 > 0g9.

Case 1: Apply 0,1 then o,s.

In this case, ) _. A;"f can be less than 1. During the first loading

(,1) NUMErous microcracks can be initiated, which can be

further propagated by the second loading (o a.2).

(source Course presentation Hanlon, S. Suresh MIT)
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Influence of sequence of loading

Case 2: Apply 0,2 then o,;.

n;
Nyg;

IS not high enough to cause any microcracks, but it is high enougt

In this case )

can be greater than 1. The first loading (o 42)

to strain harden the material. Then in the second loading (o 41),
since the material has been hardened it IS more difficult to initiate
any damage in the material.

(source Course presentation Hanlon, S. Suresh MIT)
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Variable amplitude cyclic loadings

da

dN

= fg(AK}R}@

history variables

plasticity: history dependent

plastic wake
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Overload and crack retardation

It was recognized empirically that the application of a tensile overload in a constant amplitude cyclic loat
leads to crack retardation following the overload; that is, the crack growth rate is smaller than it would

have been under constant amplitude loading.

ﬂve_llﬂad I

MWW

TIME

392

/
Constant amplitude /
loading growth \,/
/

Retarded growth
due to overloads




AR RRRRRRARRRARR

Crack retardation
%

1

Ou I /;"
L /
I|I .- l"'-.l

| : —  Point A: plastic
NG point B: elastic

Ay TFyy|
o _
/ 70 After unloading: point A
Ve, ,~__and B has more or less the

—— .
| / same strain ->
I point A : compressive stress.

Aj
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Crack retardation

a large plastic zone at overload has
left behind

residual compressive plastic zone

close the crack->crack retards
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Overload and crack retardation

It was recognized empirically that the application of a tensile overload in a constant amplitude cyclic
load leads to crack retardation following the overload; that is, the crack growth rate is smaller than it
would have been under constant amplitude loading.

40‘ T =788 MPa |
JUUUNUUUUL e
— 48 MPa
- 0
E — =28 MP. —
E 20} 8 MFa n— 188 MPa |
T -
O
=
(58
- 10 =
hA
<
o ql- \\ -
O
61— OCCURRENCE OF PEAK LOADS OR STRESSES ™|
4 I
0 2x10° 3.10° 4x10° 5+10°

NUMBER OF CYCLES, n
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Fatigue crack inhibition:
Shot-peening

Shot peening is a cold working process in which the surface of a
part IS bombarded with small spherical media called shot. Each
plece of shot striking the surface acts as a tiny peening hammet,
imparting to the surface a small indentation or dimple. I'he net
result is a layer of material in a state of residual compression. It IS
well established that cracks will not initiate or propagate in a

compressively stressed zone.

(source Course presentation Hanlon, S. Suresh MIT)
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Fatigue crack inhibition:
Shot-peening

A typical residual stress profile created by shot peening IS shown
pelow:

% ULTIMATE TENSILE STRENGTH

(=)
-0 COVPRESSON
0

¢

(source Course presentation Hanlon, S. Suresh MIT)
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Fatigue crack inhibition:
Shot-peening

Since nearly all fatigue and stress corrosion failures originate at
the surface of a part, compressive stresses induced by shot
peening provide considerable increases In part lite. Typically the
residual stress produced IS at least half the yield strength of the
material being peened.

The benefits of shot peening are a result of the residual

compressive stress anda the cold working of the surface.

(source Course presentation Hanlon, S. Suresh MIT)
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Fatigue crack inhibition:
Shot-peening

Residual stress: Increases resistance 1o fatigue crack growtn,
corrosion fatigue, stress corrosion cracking, hydrogen assisted
cracking, fretting, galling and erosion caused by cavitation.

Cold Working: Benefits include work hardening (strengthening),
iIntergranular corrosion resistance, surface texturing. closing of
porosity and testing the bond of coatings.

(source Course presentation Hanlon, S. Suresh MIT)
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Fatigue crack inhibition:
Shot-peening

Residual siresses are those stresses remaining in a part after all
manufacturing operations are completed, and with no external

load applied. In most applications for shot peening, the benefit
obtained 1S the direct result of the residual compressive stress

produceaq.

(source Course presentation Hanlon, S. Suresh MIT)
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Damage tolerance design  1970s

(stress concentration: possible crack sites)
1. Determine the size of initial defects , 2o NDI

2. Calculate the critical crack size atwhich failure
would occur o/Ta. = Kjg

3. Integrate the fatigue crack growth equations to
compute the number of load cycles for the crack to

grow from initial size to the critical size

de da
N = N
0 /ﬂﬂ C(Ao+/ma)™
4. Set inspection intervals
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Examples for Fatigue

A large plate contains a crack of length 2ao and is subjected to a constant-amplitude
tensile cyclic stress normal to the crack which varies between 100 MPa and 200 MPa.
The following data were obtained: for 2ap = 2 mm it was found that N = 20,000
cycles were required to grow the crack to 2ay = 2.2 mm, while for 2a = 20 mm it
was found that N = 1000 cycles were required to grow the crack to 2ay = 22 mm.
The critical stress intensity factor is K. = 60 MPa /m. Determine the constants in

the Paris (Equation (9.3)) and Formam (Equation (9.4)) equations.

da log(zy) = log(z) + log(y)
log — =logC + mlog AK log(z?) = plog(z)

dN
AK — AJ\/E 0.0 MP&\/E ag — 1 mm |Og10(x)
17.72 MPay/m a0 = 10 mm

-9 —8.30=1log C +0.748m
do  a;—ag 5 X 1077 m/cycle

dN~ N 1 x 1075 m/cycle —6.00=log C +1.248m

m MN—46m79 /cycle

(MPay/m)*® cycle

m=4.6 C=1.82x 1012




Forman’s model R=2mn _ g5

Omax

da -
log< [(1— R)K, — AK] j—;} = log C' + mlog(AK)

>

log[(0.5 x 60 — 5,6) x 5 x 107°] = log C + mlog 5.6
log[(0.5 x 60 — 17.72) x 10~ °] = log C + mlog 17.72

—6.914 = log C + 0.748m
—4.911 = log C' 4+ 1.248m

C = 1229 MN733m>% Jcycle , m = 4.006

C and m in Forman’s model are different from thgse in Paris’s model.



9. Dynamic fracture mechanics and rate effects

9.1. LEFM solution fields

9.2. Dynamics of moving crack tip, process zone size, crack
speed

9.3. Crack path instabilities
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Dynamic stress intensity factor

s7(r,0,t) =

@‘+ )EE(Q as T —0
Vonr

Crack speed
K(t) = lime/ZﬂIgsll(.rg,U.,t), Kp(t) = lim V21rxst? (29, 0,1)
i Tra—r
lg cos 26
E}l — | (1+&HJECDHQ ! —4&'1&5 2 1 .
D R i
s12 _ 201 (1 + %) {sin %9; B sin %Hﬂ}
! D v v S
-1 {(1+& )(1+ 207 QJJCDSIQI 4oy os 301 Mode |
~1 = Qp — — 4oy <
I D I 1 I \/ﬁ A _,:r_,ﬂ
o1l _ 2o (1 + a%) {Siﬂ %{-}} B Siﬂ%ﬁﬂ}
! D N
1 cos 6, cos 195
Y12 = —{daja 2 1+ a?)? .,
=7 { o — ( 1) T Mode I

X2 — 2o {(1 +20% — ay)

&11119 sin 16
> - — (1+a}) ”}
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Dynamic angular dependence function

1 lg.
1 5 COS 507 Ccos 5t

I _@{ (1 + ﬂlﬂj ﬁ dayayg - p

(k) = \/1 — 0/cfyy
Vk) = \/1 — (0sinf/cq))?

tan b)) = o) tant, k=12

D = dajapy — (14 ag)”.

Longitudinal and shear wave speeds are ¢; = cq and ¢y = ¢
A+ 2 T
Cq = . Cs = .[]—.
P P
; y J :
i [ E(l—v) f E 0.862+41.14v
3D and 2D plane strain  ¢;=_| ( , Cs=,[ , CRACy
V p(14+v)(1—=2v) \ 2p(1+v) [+
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Longitudinal (pressure) and shear
waves

Pressure wave front

Shear wave front

link
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https://www.youtube.com/watch?v=hqvGWd0S_rw

9. Dynamic fracture mechanics and rate effects
9.1. LEFM solution fields

9.2. Dynamics of moving crack tip, process zone size, crack
speed

9.3. Crack path instabilities
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Rayleigh wave speed limit

1 1g. Y
1 [ 5 5 COS =0 cos =y

£E::;]' —_ — — (:1 '4— E:Ei;:]i E_ ;L{]iflfkjj ;!ﬁa ;

D) 7 .

For one material under mode | maximum possible crack speed is Rayleigh wave
speed where angular functions tend to infinity:

It can be shown that the Rayleigh wave speed, denoted by cr, equals the
non-zero value of ¥ at which D vanishes (Rayleigh, 1885).

7 —

a/cg °
0.4} log o
[ —1/2
0.2} —1
1, —3/2
DH — LEFM
10 20 30 40 50 60
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Dynamic stress intensity factor

I{{sz (f (L. f‘) — ‘EL{]E?] ('ﬁ)ﬁr{m (t? (1, U)

stationary stress intensity factor, Ky)(t,a,0], 1s the stress in-

tensity factor that would result from the same applied loading if the crack
tip were staflonary at the instantaneous position corresponding to the crack

length a

ko (70) 18 a universal function of crack-tip speed

for mode-(k)

crack growth that 1s independent of the loading and the geometry of the

body and that can be approximated as

ko (0) ~ (1 — 9/cr) //1 — 0/can

Note that k(v) approaches 0 as the crack speed tends to Rayleigh wave speed.
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Dynamic energy release rate

K, Grelation:

1 —
G — 2; (A (0)K} + Ag (0) K]

1 —v

 Remember that for static case: G — 5
H

KT+ K7

The functions |4, are universal functions khat do not depend on the details of
the loading or on the domain geometry. These functions have the properties.

e Static limit: A{;f} — lasv— 0
* Rayleigh speed limit (G tends to infinity)

14{;;_) = O[(ER — ’ﬁ)_ll
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Dynamic crack propagation criterion

* Dynamic Griffith criterion:
Crack propagates when energy release rate reaches
fracture toughness A, (resistance):

G =1

* Noting that:
I“f{kj (lf., a, 'f-‘) — ﬁa.‘{;fj ('f-‘)f{[;;j, {:f? a. U).
1 —v

211

T_

[A1(0)K7 + An (0) K]

e For mode | we obtain:

1 —v
2/1

A(D)k(0)? [K(t,a,0)]” = I
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Dynamic crack propagation criterion

QJLLFD

(1—v)|K(t,a, [l)]2

very accurately approximated by

g(v) =1 —7/cg for 0 < v < cp

Final note:

fracture toughness A, itself depends on crack

speed v!
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Example of dynamic fracture
\ s \

Infinite domain under dynamic mode |
load g = Qt{w initial crack tip - IE
Static intensity factor is evaluated as, ( | Ji’-l
\ Y \
. . _ boc
K(t,a,0) = C\2mcgt
AN 211y Rayleigh wave speed limit
Crack propagates when g(?) 1= ) [K(t.a.0)P" ‘
) wly _ v
g9(0) = 2, |

(1 —v)meq (Co)° t

Crack initiation time then is,

TUPC

" 4(c0)
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Reminder:

Fracture process zone in dvnamic fracture
T

A X1,
LCT

¢ Importance of process zone size A

e

—

— Static estimate:

T

A=c¢mw — o L

l —vas A~

lt Dugdale model 4 o
¢ =4 ‘

'_EI n 1 = 1 =) \

-7 Potential-based TSRs / | O

— Minimum number of elements in process zone size:

There should be at least 4-10 elements along the PZ

— Dynamic estimate: PZS decreases as crack speed © approaches Rayleich wave speed e

A(#) =

At)=0asd —wep =

-

A(D)’

i

-

Smaller elements are needed in PZT as crack accelerates!

1 : 1 =
0.8¢ 0.8t
;‘-q: 0BT :-é: 0BT
log o’
- - Z1/128
— 0.4} ) 04 /
™ log o i —=1/64
—1/2 ; 132
0.2} — 1 : 0.2f-=--1/16
———3 2 | e —1/8
—equation (11) —equation {11)
D 1 L L L 1 L L 1 1 1 L 1 L L 1 L L L L 1 L L L 1 D L L L L 1 1 L ' 1 1 L L 1 L 1 1 1 L L 1 L L L 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
! ! -
a a =ifen

(a) Low-amplitude loading, .. < &. (b) High-amplitude loading, f.. — .



;
0.8}
0.5 ,
[ log o
: 1/128
0.4 — _1/64
[ e
‘D.E' == -|._.-'r-|.f.l
I 1/8
[ — LEFM
D [ L
0 2 4 8

Small scale yielding in dynamic fracture

10
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Super-shear crack propagation



Crack propagation speed background

* For a homogeneous solid, crack speed cannot exceed Rayleigh wave speed (cg).

* In practice, speed often does not exceed 50% of c;.

* Experiment with two weakly joined identical solids, where the weak interface confines the
crack to the plane, an interfacial crack indeed approaches cg.

Area Fraction (holes)

0

speed v/vr
o

o

1

. 8¢

o

.

|
|
|

OJ.wﬁ

:

@
© ©
@ . ©
Q
o]
a4 - virgin
o - interface A - Figure 6
O - holes m - Figure 7
QO - branched ® - Figure 9
0.2 0.4 0.6 0.8
Fractional Strength (interface)

1

Washabaugh, P. D. & Knauss, W. G. 1994 A
reconciliation of dynamic crack velocity and Rayleigh
wave speed in isotropic brittle solids. Int. J. Fracture
65, 97{114

Fig. 8. Dependence of the crack velocity on the property of the material (Le. fractional strength or area fraction)

preceding the crack [ront.



Do cracks do really reach Rayleigh speed?

Sharon Fineberg:
mirror, mist, hackle patterns as the crack accelerates

] ® gk W\MWW U o= 340m/s
o | (or 0.36V %)

5 |‘0 15 0 5 10 15 0 5 10 15

Time (us) Time (us) Time (us)

> B -

3mm

i ‘. 4 X _*‘ .o ‘S A
W

l‘_ 0.5mm ——|
V<V. V>Ve V>Ve

g
g
g

QO
ty (m/s)

g
g
g

2
g

Crack Veloci

g
g

[~

* Crack starts oscillating well before reaching Rayleigh wave speed V; (cg)
* Crack speed does not reach V (cg)!
* For this material critical speed v. = 0.36 V,
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Do cracks do really reach Rayleigh speed?

Confirming the continuum
theory of dynamic brittle
fracture for fast cracks

Eran Sharon & Jay Fineberg I' = GHAW) =~ G(I) ( | — L)

VR
a b
& 259 -
= ] . L, 800f
2 207 -
= 1 . - 600}
>
S 151 £ |
2 1 - L
S 0] o © 400[
L ™ > [
2 ] > pi 5
S 5 . @ 200f
L ﬁ‘%mﬂmm v O i
Or~v T T T T - - 0 . L " 1 i
200 400 600 800 0 20 40

Crack velocity (m s—)

Figure 3 A comparison of theory with measurements in PMMA, forv >v_.a, The
total measured™ fracture energy, I'(v), (filled squares) compared with derived
values, obtained using equation (1) with the velocity measurements shown in
Fig. 2a as input. The derived values, I'y(v), (filled triangles) coincide with I'(v) for
v<400ms~' (1.17v.), and diverge for v>400ms~'. This divergence occurs
simultaneously with increased 'scatter’ in I'y(v), indicating that I'y is no longer a
well-defined function of v. Thus, due to micro-branch formation, the single-crack
assumption necessary for equation (1) is invalid when the average velocity is

used As a crack possesses no inertia, instantaneous single-crack states that

Crack length (mm)

M s WD) = vk(l - (f “) )
c
800 B s
PR mm—— T T
gz 5 80 8 90 22035585 95 95 100
® 800 — 800 ——————————
B o fFbe o= e
60 80 100 65 70 75 055 20
Crack length (mm)
V., are still described by

Equationm he derived fracture energy (open symbols), using the peak
velocities presented in b and ¢, indeed collapses to the well-defined value of
3,000) m. This value equals 0.9I'(v.), the same as the value of I' (per unit fracture
surface) obtained inref.14forv > v_. b, ¢, Full (b) and close-up (¢) measurements
of the instantaneous velocities (thin lines) corresponding to Fig. 2a, compared to
the single-crack predictions of equation (2) (heavy lines) using I' = 3,000Jm 2.
With no adjustable parameters, the velocity peaks agree well with the theoretical
curve at v of up to 90% of the asymptotic crack speed, vg.

Beyond v, agreement breaks down owing to the appearance of the multiple-crack ensemble. But in this regime,
the micro-branching process can momentarily produce a single-crack state which instantaneously attains its
predicted single-crack velocity, for velocities up to 0.9¢p.

Crack dynamics does not have interia -

Crack reaches Rayleigh wave speed at instances
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Cases that the crack speed exceed Rayleigh wave
speed: Dissimilar material interfaces

Intersonic crack growth on an interface

By H. H. YUt AND Z. SUO
Department of Mechanical and Aerospace Engineering and
Princeton Materials Institute, Princeton University, Princeton, NJ 08544, USA

* Crack can propagate on an interface between dissimilar solids at speeds between the smallest
and the largest sonic speeds of the constituent solids.
* Assuming the existence of a sharp crack tip:
* The stress field is singular not only at the crack tip, but also along the shock front.
* The singularity exponents differ from one half. -
* the energy release rate is either zero or infinite.



Crack propagation in homogeneous medium
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Figure 5. Cohesive zone length as a function of the crack speed for weakly joined identical

. . Figure 6. Cohesive zone length as aflunction of the crack speed for weakly joined identical
solids (opening mode).

olids (shear mode).

rermote Toad Forbidden zone: cg < v < ¢4

I solid I

solid IT

remote load

Yu, H.H., Suo, Z., 2000b. Intersonic crack growth on an interface. Proceedings of the Royal Society
of London, Series A (Mathematical, Physical and Engineering Sciences) 456, 223—46.



Possibilities of supershear crack propagation
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Yu, H.H., Suo, Z., 2000b. Intersonic crack growth on an interface. Proceedings of the Royal Society
of London, Series A (Mathematical, Physical and Engineering Sciences) 456, 223—46.



Possibilities of supershear crack propagation

2000 - w=125mm
- SUPERSONIC
i Dilatational wave speed Co = 2534 m/s
2500 F
€ i STABLE INTERSONIC =
£ 2000} v A -
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Le. - |‘ " x
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a - Shear wave speed ¢, =1248m/s | [mpact =
= - velocity & Predefined
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Fig. 5 Representative plot showing wave speeds for Ho-
malite-100 and nomenclature of various regions

Int J Fract (2007) 143:79-102
DOI 10.1007/s10704-007-9051-z

ORIGINAL PAPER

Simulation of dynamic crack growth using the generalized
interpolation material point (GIMP) method

Nitin P. Daphalapurkar - Hongbing Lu -
Demir Coker - Ranga Komanduri



Possibilities of supershear crack propagation:
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Fig. 7 (Online color) Snapshots of Ty, (MPa) for Vig, =
I)m/s at various durations (a) Stress wavefront arnving
at the nitial crack-tip (b) Stress wavefront loading the
initial crack in predominantly shear mode (c) Crack has
propagated along the interface after initiation at 10.4 us

Int J Fract (2007) 143:79-102
DOI 10.1007/s10704-007-9051-z
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(d) Maximum shear stress pattern immediately after the
transition mechanism (¢) Formation of shear shock waves
() Crack propagation at a sustained crack-tip velocity in
intersonic regime (cg = 1164 m/s)

ORIGINAL PAPER

Simulation of dynamic crack growth using the generalized
interpolation material point (GIMP) method

Nitin P. Daphalapurkar - Hongbing Lu -
Demir Coker - Ranga Komanduri

Burridge—Andrews mechanism
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Fig. 9 Plot of normalized (with cg) crack-tip velocity with
tme for ‘.mp = 3 m/s

The sustained crack-tip velocity falls either in the sub-

Rayleigh regime or in the region between \/ECS and ¢y
MD simulation: Abraham FF, GaoH(2000) How fast can
cracks propagate? Phys Rev Lett 84(40):3113-3116
Shear dominated crack initially accelerates to cp
Followed by the nucleation of a daughter microcrack
ahead of the main crack

Finally coalescence of the mother and daughter-
cracks with the crack-tip velocity reachinga

value as high as the longitudinal wave speed.

After coalescence, when the far-field loading is relaxed,
the crack decelerates and propagates at a steady

rate close to a speed of v/2c;.




Possibilities of supershear crack propagation: MACH
cones
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Near-source ground motion from steady state dynamic rupture pulses s
Eric M. Dunham 0 4 g 0 g

Fault paraliel (km)
Department of Physics, University of California, Santa Barbara, California, USA

Ralph J. Archuleta

Institute for Crustal Smudies and Department of Geological Sciences, University of California, Santa Barbara,
California, USA

GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L03302, do1:10.1029/2004GL021793, 2005



Possibilities of supershear crack propagation

Earthquake and wave propagation

TPV205-2D with Reduced d-

Supershear Rupture: Mach Cones

Collaborators: R. Haber, J. Erickson, A. Elbanna (UIUC)




9. Dynamic fracture mechanics and rate effects
9.1. LEFM solution fields

9.2. Dynamics of moving crack tip, process zone size, crack
speed

9.3. Crack path instabilities
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Do cracks accelerate to Rayleigh speed?

Sharon Fineberg:
mirror, mist, hackle patterns as the crack accelerates

] ® gk W\MWW U o= 340m/s
o | (or 0.36V %)
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* Crack starts oscillating well before reaching Rayleigh wave speed V; (cg)
* Crack speed does not reach V (cg)!
* For this material critical speed v. = 0.36 V,
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Sample fracture patterns for brittle materials?

Branching only occurred for thicker specimens and very short notch depths
a _

Fig. 5. Macroscopically planar fracture surfaces for the specimens containing the (a) 2.0 mm, (b) 1.4 mm, (c) 1.0 mm and (d) 0.5 mm
notches.

Successful branching appears to take place when
micro-cracks form a sufficient distance from the main
crack tip to allow their subsequent propagation to
take place as opposed to being arrested by the arrival
of an unloading wave from the main crack.

Murphy 2006, Dynamic crack bifurcation in PMMA
441 Sample simulation



Sample fracture patterns for brittle materials

1. Too much energy: a single crack cannot dissipate that much energy
particularly in brittle materials

Gao: 1993: Wavy crack path to have a higher energy ‘ease rate
v

— |

i’ -

N

o

2. Yoffe’s instability: Angles c

circumferential stress!

A
2

L6
I 1.2

0.8

0.4F
0F
-0.4

! %= eyx )

E Dynamic stability of a propagating crack ;

O. Obrezanova® *, A.B. Movchan®, J.R. Willis®

ier than 0 degree will have maximum

o,(r,0,)= max o,(r,0)

—T<O<T

0 30 60 90 120 150 180
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Effect of T-Stress

Murphy 2006, Dynamic crack bifurcation in PMMA

Further developing this theme, Streit and Finnie [6] suggested that the directional stability of a quasi-static
crack should be influenced by the state of stress at a finite distance ahead of the crack tip in the location where
the micro-cracks or voids are formed. In this case, not only the singular terms in the stress expansions, but also
the remote normal stress in the crack propagation direction should be considered. The latter is known as the
T-stress, and its influence on crack stability is well known [7]. This concept was applied to dynamic crack curv-
ing by Ramulu and Kobayashi [8]. In accordance with previous findings, Ramulu et al. [9] observed that suc-
cessful branching always took place at a constant value of Kj, which was therefore cited as a necessary

[6] Streit R, Finnie I. An experimental investigation of crack-path directional stability. Exp Mech 1980;20:17-23.
[7] Cotterell B, Rice JR. Slightly curved or kinked cracks. Int J Fracture 1980;16:155-69.
[8] Ramulu M, Kobayashi AS. Dynamic crack curving—a photoelastic evaluation. Exp Mech 1983;23:1-9.

[9] Ramulu M, Kobayashi AS, Kang BSJ, Barker DB. Further studies on dynamic crack branching. Exp Mech
1983;23:431-7. for T>0

for T<O 1

Figure 10. Path of crack growth and dependence on non-singular stress T acting parallel to the initial crack
at its tip. . _ _
For small crack growth under nominally Mode | loading, the straight crack

path has been shown to be [Cotterell, Rice: 1980]:
e StablewhenT<0
e UnstablewhenT>0

Figure 11. Crack paths observed by Radon et al. [29] in experiments on biaxially stressed PMMA sheets.

» Acritical role of the sign of the T -stress applies only to the situation of single crack growing in a large plate
 Counter examples: Array of collinear cracks, wedge cracks, etc.

Melin, Solveig. "The influence of the T-stress on the directional stability of cracks." International
Journal of Fracture 114.3 (2002): 259-265. 443



Crack branching K-critical value
Relation to T-stress

Ramulu M, Kobayashi AS, Kang BSJ, Barker DB. Further studies on dynamic crack branching. Exp Mech 1983;23:431-7

Branching takes place at a constant value of KI

) A craci:-brgnchiné, stress-intensity factor of K,
3.3 MPam and a characteristic radius of r.
0.75 mm were determined for this polycarbonate sheet.

T < 0 has suppressing effect

Crack curving of post-branched cracks, attraction and
repulsion, depend not only on K,/K, but more im-
portantly on o,,. Negative o,, suppresses crack curving
irrespective of the sign of K, /K. |
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Energetic argument for crack branching

Eshelby JD (1970) Energy relations and the energy—momentum tensor in continuum mechanics. In: Kanninen MF,
Adler WF, Rosenfield AR, Jaffee RI (eds) Inelastic behaviour of solids. McGraw-Hill, New York, pp 77-115

Branching takes place when the energy for 1 crack is equal to the energy of 2 bifurcated cracks

In the single crack case, a growth criterion for a branched crack must be based on the equality between the energy
flux into the two propagating tips and the energy required to open the material and create new surfaces as a result

of this propagation (Eshelby 1970).

Adda-Bedia M (2005) Brittle fracture dynamics with arbitrary paths- lll.The branching instability under general loading. ] Mech Phys Solids 53:227-248

* The jump in the energy release rate due to branching is maximized when the branches start to

propagate very slowly.
 The branching of a single propagating crack under tensile loading was found to be energetically

possible when its speed exceeds a certain critical value (Adda-Bedia 2005).

Fig. 12 Schematic representation of a straight crack with
symmetrically branched curved extensions. The fictitious
straight crack around which the perturbation expansion is
performed is drawn on the lower branch

Katzav, E., M. Adda-Bedia, and Rodrigo Arias. "Theory of dynamic crack branching in brittle materials." International Journal of Fracture 143.3 (2007): 245-271.
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