
ME524: Fracture Mechanics Midterm Exam

Note that the midterm will be graded out of 250 with 50 extra points on the question sheet.

1. (90 Points). A cylindrical pressure vessel with closed ends has a radius R = 1 m and thickness
t = 40 mm and is subjected to internal pressure p. The vessel must be designed safely against
failure by yielding (according to the von Mises yield criterion) and fracture. The vessel is made
of steel with yield stress σy = 860 MPa and fracture toughness KIc = 100 MPa

√
m.

(a) For von Mises yield stress, yielding occurs when,

σv = σy for σv =

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
(1)

where σ1, σ2, σ3 are principal stresses.

By using the values of σzz, σθθ, and σrr = 0 (exterior surface of the vessel, producing largest
σv), obtain pp the maximum allowable p from plastic yielding perspective.

(b) What direction of the crack between axial to circumferential direction experiences the highest
stress intensity factor?

(c) Plot the maximum permissible pressure pc versus crack length ac considering both plastic
yielding and fracture. Employ LEFM model for fracture analysis. To simplify the problem,
consider the crack in the worst direction for fracture for both fracture and plastic yielding
consideration. The crack is through thickness. Finally, the (axial) length of the cylinder is
assumed to be much larger than crack length. So, based on the information provided you
may not need to decrease plastic yielding untimate stress based on the reduction of remaining
area.

(d) What is the crack length atran corresponding to the transition between plastic and fracture
failure mechanisms?

(e) Calculate the maximum permissible crack length ac for an operating pressure p = 12 MPa.

(f) Calculate the failure pressure pc for a minimum detectable crack length a = 1 cm.

(g) Calculate the failure pressure pc for a minimum detectable crack length a = 1 mm.

2. (60 Points). For the notch problem shown in (1) we obtain the power of singularity for strain
and strain (λ1 − 1 = −1

2) from the equation sin(2πλn) = 0 ⇒ λn = n
2 , n > 1. Using the

equation,

sin(2λα) + λsin(2α) = 0 mode I (2a)

sin(2λα)− λsin(2α) = 0 mode II (2b)

obtain the power of singularity of stress and strain (λ − 1) for modes I and II. To ensure that
internal energy is finite around the crack tip λ − 1 ≥ −1

2 (UdA = σεrdrdθ bounded for r → 0).

Also, for the singular response λ−1 < 0. So the acceptable range for the first term λ is 1
2 ≤ λ < 1

for a singular response. For more information refer to the course presentation pages 135-138.

• Find the stress and strain singularity power of mode I and II for 90◦ notch (α = 3
4π. You

need to obtain the λ1 the minimum root of equations (2) for λ ∈ [1
21).

• Noting that σ = KIr
λI−1 +KIIr

λII−1 + · · · discuss which mode will dominate the stress field
near the crack tip. How is this compared to sharp crack, α = π, where λI = λII = 1

2 .

• For your interest, no need to submit. Plot radius of singularity (when applicable) for
modes I and II for α = π/2 to π.
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Figure 1: Schematic of notch geometry

3. (150 Points). Figure2 shows a point force displacement system with crack length A, force P, and
beam width and height B and 2H, respectively. The moment at the end of the crack due to the
force is M = PA. To distinguish A from area of the crack surface we use A = AB for the latter.
We employ the following nondimensional parameters to facilitate the analysis of this problem,

a =
A

H
normalized crack length (3a)

p =
P

σyBH
normalized force (3b)

m = pa =
PA

σyBH2
normalized moment (3c)

δ =
∆

H

E

σy
normalized displacement (crack opening) (3d)

where σy is the yield stress.

Figure 2: Force displacement relation for a point force system.

The purpose of this problem is plastic fracture mechanics analysis of this crack and comparison
with LEFM. We adapt an elastic-perfectly plastic material behavior. From linear analysis we know
that the maximum moment M that this beam can withstand without plastic deformation is when
σmax at points C in the figure reach σy. If M further increases (through increasing P or crack
length A) we will have plastic yielding in points C and the plastic region further penetrates inside
the domain, until M at crack tip eventually reaches maximum possible moment that the section
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can withstand. The limit for initiation of plastic deformation and maximum value moments are,

Mlmax =
I

σy
zmax =

2

3
BH2σy maximum moment for linear response (4a)

Mmax = BH2σy (all interface is yielded) maximum moment of the interface (4b)

To determine the deflection ∆ at the tip of the crack we employ relations between M(x) and
d2∆(x)

dX2 as follows:

d2∆(x)

dX2
=

{M(x)
EI M(x) < Mlmax
σy
HE

1√
3
√

1−M(x)/Mmax
Mlmax < M(x) < Mmax

(5)

Note that ∆(x),M(x) denote displacement and moment values along the beam while undecorated
∆ and M denote their maximum values at the two end points of the crack. By locating the
initiation position of plastic deformation in the beam and integrating (5) we obtain,

δ =
∆

H

E

σy
= a2f(m), f(m) =

{
1
2m m < 2

3
20

27m2 − 2
3
√

3m2

√
1−m(2 +m) 2

3 < m < 1
(6)

Equation (6) implies that when the applied moment m = pa is small (< 2
3 corresponding to Mlmax)

the linear response holds between load and displacement. However, as m increases either through
increasing load P or crack length A, the P −∆ relation is no longer linear.

(a) Relation between normalized displacement and mo-
ment,equation (6).

(b) P −∆ plots for sample crack lengths A = aH based
on (6).

Figure 3: Linear and nonlinear P −∆ relations for the crack problem in figure 2. The dash line LEFM
curves show that for small “loading” (m, P), the actual P −∆ relation is linear.

(a) Energy release rate J: To characterize plastic fracture response of this crack, we need to
evaluate energy release rate J = G. Since equation (6) is the P −∆ relation (in normalized

form), we should be able to evaluate internal (strain) energy U(∆,A) =
∫ ∆

0 P (∆̄)d∆̄|fixed A

or complimentary internal energy U∗(P,A) =
∫ P

0 ∆(P̄ )dP̄ |fixed A (note that the dummy pa-

rameters denoted by (̄.) are integrand integration variables). Subsequently, using one of the

following equations J = G = − 1
B

dU(∆,A)
dA |fixed ∆ or J = G = 1

B
dU∗(P,A)

dA |fixed P we can evaluate
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J . Note that J is taken as the energy release rate per unit area of crack advance A = AB
rather than crack length A.

Choosing the appropriate form of J in terms of U or U∗ for this problem show that,

J(m) =
σ2
yH

E

{∫ m

0
f(m̄)dm̄+mf(m)

}
(7)

(b) LEFM vs. PFM, Small Scale Yielding (SSY): After evaluating (7) we can show (no
need to prove (7) yields (8)) that normalized energy release rate j is equal to,

j =
J
σ2
yH

E

=

{
3
4m

2 m < 2
3

1− 2√
3

√
1−m 2

3 < m < 1
(8)

This J −m relation and its realization as J curve for specific load samples p are shown in
(4).

(a) Energy release rate as a function of normalized mo-
ment m = pa, (8)

(b) J curve (Jvs.A) plots for sample applied loads P =
pσyHB based on (8).

Figure 4: Energy release rate J as a function of normalized moment m = pm and its realization for
specific load values p. The LEFM solution does not take material yielding into account.

i. What is the limiting m value, mtran, below which LEFM solution can be used? For the
geometry shown in 2, what is the transition load Ptran(A) for a given crack length A for
which LEFM solution can be employed?

ii. Briefly (less than 2-4 sentences) explain why for j > jtran (P > Ptran(A)) plastic solution
has a larger energy release rate?

iii. Since for LEFM K =
√
GE (plane stress), the “effective” normalized K for this problem

is,

k =
K

σy
√
H

=


√

3
2 m m < 2

3√
1− 2√

3

√
1−m 2

3 < m < 1
(9)

Consider a loading P1 = 0.05σyBH, A = 10H. What is the stress intensity factor K1

corresponding to this load? What is the stress intensity factor K2 for P2 = 2P1 and
same A? What is the relation between 2K1 and K2? Using figure 5(a) explain why the
superposition principle (e.g., K of 2P is 2K) does not hold here.
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(a) Normalized stress intensity factor k = K

σy
√
H
, (9) (b) Stress intensity factor plots for sample applied loads

P = pσyHB based on (9).

Figure 5: “Effective” stress intensity factor computed from J .

(c) Critical load Pcr and displacement ∆cr correspond to load and displacement values that
the crack can start propagating for a given fracture resistance Jc. To determine Pcr, as done
before, in R plot (e.g., 4(b)) we find the smallest load (for load control) or displacement
(displacement control) value whose J curve intersect R curve for the initial crack length A0.
If R(A) is constant R(A) = Jc, for linear regime (jc = Jc

σ2yH

E

< 1
3 , cf. (8), we obtain,

J = Jc ⇒ j =
3

4
m2 = jc (m <

2

3
linear branch of j) ⇒ mcr = pcra0 =

2√
3

√
jc ⇒

Pcr = BHσypcr = BHσy
mcr

a0
= BHσy

2√
3

√
jc
H

A0
=

2√
3

√
jc
BH2

A0
σy (10)

Note that Pcr depends on the initial crack length A0. Similarly, by plugging mcr in (6) we
obtain ∆cr, the critical displacement for crack propagation initiation. ∆cr is either directly
applied in displacement control loading or is the displacement corresponding to Pcr for load
control setting. These values are summaries as follows,

Pcr =
2√
3

√
jc
BH2

A0
σy (11a)

∆cr =

√
jc
3

σy
E

A2
0

H
(11b)

for m < 2
3(jc <

1
3).

i. Evaluate Pcr, ∆cr for the nonlinear range 1 > m > 2
3(1 > jc >

1
3) in terms of jc and mcr.

ii. Combining the solution from (11a) and your solution for 1 > m > 2
3 , plot Pcr in the

form pcra0 = P A0
BH2σy

versus jc = Jc
Hσ2

y/E
for the entire range jc = 0 to 1. In addition to

Pcr from PFM, add the Pcr that you would have obtained from LEFM analysis for the
entire jc ∈ [0 1] using (11a).

iii. For what ranges of jc, Pcr from LEFM and PFM analysis are different and in that range is
PFM Pcr smaller or larger than that of LEFM analysis. Explain (less than 2-3 sentences)
why Pcr of PFM is smaller or larger than that of LEFM.
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iv. Similarly, plot ∆cr in the form δcr
a0

= ∆ HE
A2

0σy
versus jc = Jc

Hσ2
y/E

for jc ∈ [0 1] for both

PFM and LEFM solutions using (11b) and your solution.

v. Compare ∆cr from LEFM and PFM and comment on in which range they are different
and briefly explain the cause of difference. You can refer to figure 6 for the explanation
of your results.

Figure 6: Pcr and ∆cr from LEFM and PFM analysis of the crack with initial length A0 for jc = 0.8.
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